Skip to main content

Neuroinflammation in Alzheimer’s Disease

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration

Abstract

The neuropathology of Alzheimer’s disease (AD) is still only partly understood. Beyond doubt neuroinflammation plays a key role in pathophysiology of the disease. Still it has not been fully understood when and how inflammation arises in the course of AD. Whether inflammation is an underlying cause or a resulting condition in AD remains unresolved. Mounting evidence indicates that microglia activation contributes to neuronal damage in neurodegenerative diseases. However, also beneficial aspects of microglia activation have been identified. The purpose of this review is to highlight new insights into the detrimental and beneficial role of neuroinflammation in AD. In regard to this, we discuss the limitations and the advantages of anti-inflammatory treatment options and identify what future implications might result from this underlying neuroinflammation for AD therapy. Here we put a special focus on the therapy with COX-1 and COX-2 Inhibitors as well as anti-Aß antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sperling RA, Aisen PS, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rosenberg PB et al. Cognition and amyloid load in Alzheimer disease imaged with Florbetapir F 18(AV-45) positron emission tomography. Am J Geriatr Psychiatry. 2013;21(3):272–8.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Panza F et al. Immunotherapy for Alzheimer’s disease: from anti-beta-amyloid to tau-based immunization strategies. Immunotherapy. 2012;4(2):213–38.

    Article  CAS  PubMed  Google Scholar 

  4. Teunissen CE et al. [Serum markers in relation to cognitive functioning in an aging population: results of the Maastricht Aging Study (MAAS)]. Tijdschr Gerontol Geriatr. 2003;34(1):6–12.

    CAS  PubMed  Google Scholar 

  5. McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19(1):355–61.

    PubMed  Google Scholar 

  6. Akiyama H et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. in t’ Veld BA, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345(21):1515–21.

    Google Scholar 

  8. Szekely CA et al. NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology. 2008;70(1):17–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Anthony JC et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology. 2000;54(11):2066–71.

    Article  CAS  PubMed  Google Scholar 

  10. Reines SA et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology. 2004;62(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  11. Dl K. Muller N, MN. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int. J Alzheimers Dis. 2010;14(732806):732806. 10.4061/2010/732806 [doi] 732806 [pii].

    Google Scholar 

  12. Kipnis J et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A. 2004;101(21):8180–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ziv Y et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  14. Teunissen CE et al. Inflammation markers in relation to cognition in a healthy aging population. J Neuroimmunol. 2003;134(1–2):142–50.

    Article  CAS  PubMed  Google Scholar 

  15. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15.

    CAS  PubMed  Google Scholar 

  16. Edison P et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rogers J, Shen Y. A perspective on inflammation in Alzheimer’s disease. Ann N Y Acad Sci. 2000;924:132–5.

    Article  CAS  PubMed  Google Scholar 

  18. Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  19. Lue LF et al. Inflammation, a beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol. 1996;55(10):1083–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mulugeta E et al. Inflammatory mediators in the frontal lobe of patients with mixed and vascular dementia. Dement Geriatr Cogn Disord. 2008;25(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  21. Stubner S et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett. 1999;259(3):145–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang XQ et al. Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci Lett. 2009;450(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  23. Webster S et al. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging. 1997;18(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  24. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  25. Cras P et al. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am J Pathol. 1990;137(2):241–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Styren SD, Civin WH, Rogers J. Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain. Exp Neurol. 1990;110(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  27. Perlmutter LS, Barron E, Chui HC. Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett. 1990;119(1):32–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lue LF et al. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia. 2001;35(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  29. Persson M et al. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia. 2005;51(2):111–20.

    Article  PubMed  Google Scholar 

  30. Francis PT. Altered glutamate neurotransmission and behaviour in dementia: evidence from studies of memantine. Curr Mol Pharmacol. 2009;2(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  31. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81(3):302–13.

    Article  CAS  PubMed  Google Scholar 

  32. Majumdar A et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007;18(4):1490–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005;25(36):8240–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fan R et al. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci. 2007;27(12):3057–63.

    Article  CAS  PubMed  Google Scholar 

  35. Seabrook TJ et al. Minocycline affects microglia activation, A beta deposition, and behavior in APP-tg mice. Glia. 2006;53(7):776–82.

    Article  PubMed  Google Scholar 

  36. Chaves C et al. Glutamate-N-methyl-D-aspartate receptor modulation and minocycline for the treatment of patients with schizophrenia: an update. Braz J Med Biol Res. 2009;42(11):1002–14.

    Article  CAS  PubMed  Google Scholar 

  37. Wyss-Coray T et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.

    Article  CAS  PubMed  Google Scholar 

  39. Vehmas AK et al. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging. 2003;24(2):321–31.

    Article  PubMed  Google Scholar 

  40. Remarque EJ et al. Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol. 2001;36(1):171–6.

    Article  CAS  PubMed  Google Scholar 

  41. Innamorato NG, Lastres-Becker I, Cuadrado A. Role of microglial redox balance in modulation of neuroinflammation. Curr Opin Neurol. 2009;22(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  42. Espey MG et al. Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport. 1997;8(2):431–4.

    Article  CAS  PubMed  Google Scholar 

  43. Giulian D et al. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int. 1995;27(1):119–37.

    Article  CAS  PubMed  Google Scholar 

  44. Leipnitz G et al. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int. 2007;50(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  45. Thomas SR, Witting PK, Stocker R. 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for alpha-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem. 1996;271(51):32714–21.

    Article  CAS  PubMed  Google Scholar 

  46. Schwarz MJ, Guillemin GJ, et al. Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci. 2012;29:29.

    Google Scholar 

  47. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271(52):33157–60.

    Article  CAS  PubMed  Google Scholar 

  48. Aisen PS, Davis KL. The search for disease-modifying treatment for Alzheimer’s disease. Neurology. 1997;48(5 Suppl 6):S35–41.

    Article  CAS  PubMed  Google Scholar 

  49. Hirst WD et al. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol Cell Neurosci. 1999;13(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  50. Hauss-Wegrzyniak B, Vraniak P, Wenk GL. The effects of a novel NSAID on chronic neuroinflammation are age dependent. Neurobiol Aging. 1999;20(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  51. Planas AM et al. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett. 1995;200(3):187–90.

    Article  CAS  PubMed  Google Scholar 

  52. Tocco G et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol. 1997;144(2):339–49.

    Article  CAS  PubMed  Google Scholar 

  53. Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience. 1998;87(2):319–24.

    Article  CAS  PubMed  Google Scholar 

  54. Matsuoka Y et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol. 2001;158(4):1345–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hewett SJ et al. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther. 2000;293(2):417–25.

    CAS  PubMed  Google Scholar 

  56. Willard LB et al. The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenase-2 inhibition. Exp Brain Res. 2000;134(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  57. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001;13(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  58. Araki E et al. Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke. 2001;32(10):2370–5.

    Article  CAS  PubMed  Google Scholar 

  59. Yasojima K et al. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 1999;830(2):226–36.

    Article  CAS  PubMed  Google Scholar 

  60. Ho L et al. Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol. 2001;58(3):487–92.

    CAS  PubMed  Google Scholar 

  61. Lukiw WJ, Bazan NG. Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J Neurosci Res. 1997;50(6):937–45.

    Article  CAS  PubMed  Google Scholar 

  62. Chang JW, Coleman PD, O‘Banion MK. Prostaglandin G/H synthase-2 (cyclooxygenase-2) mRNA expression is decreased in Alzheimer’s disease. Neurobiol Aging. 1996;17(5):801–8.

    Article  CAS  PubMed  Google Scholar 

  63. Choi SH et al. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem. 2013;124(1):59–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Coma M, Sereno L, et al. Triflusal reduces dense-core plaque load, associated axonal alterations and inflammatory changes, and rescues cognition in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2010;38(3):482–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Montine TJ et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology. 1999;53(7):1495–8.

    Article  CAS  PubMed  Google Scholar 

  66. Lee RK, Knapp S, Wurtman RJ. Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci. 1999;19(3):940–7.

    CAS  PubMed  Google Scholar 

  67. Blom MA et al. NSAIDS inhibit the IL-1 beta-induced IL-6 release from human post-mortem astrocytes: the involvement of prostaglandin E2. Brain Res. 1997;777(1–2):210–8.

    Article  CAS  PubMed  Google Scholar 

  68. Fiebich BL et al. Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J Neurochem. 1997;68(2):704–9.

    Article  CAS  PubMed  Google Scholar 

  69. Kelley KA et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol. 1999;155(3):995–1004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions. J Neurosci Res. 1998;54(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–6.

    Article  CAS  PubMed  Google Scholar 

  72. Lehmann JM et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1997;272(6):3406–10.

    Article  CAS  PubMed  Google Scholar 

  73. Ricote M et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391(6662):79–82.

    Article  CAS  PubMed  Google Scholar 

  74. Combs CK et al. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci. 1999;19(3):928–39.

    CAS  PubMed  Google Scholar 

  75. Combs CK et al. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000;20(2):558–67.

    CAS  PubMed  Google Scholar 

  76. Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Smith MA et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19(1):363–72.

    PubMed Central  PubMed  Google Scholar 

  78. Schipper HM et al. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem. 2009;110(2):469–85.

    Article  CAS  PubMed  Google Scholar 

  79. Alcaraz MJ, Fernandez P, Guillen MI. Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des. 2003;9(30):2541–51.

    Article  CAS  PubMed  Google Scholar 

  80. Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des. 2008;14(5):429–42.

    Article  CAS  PubMed  Google Scholar 

  81. Kimura K. Mechanisms of active oxygen species reduction by non-steroidal anti-inflammatory drugs. Int J Biochem Cell Biol. 1997;29(3):437–46.

    Article  CAS  PubMed  Google Scholar 

  82. Nivsarkar M, Banerjee A, Padh H. Cyclooxygenase inhibitors: a novel direction for Alzheimer’s management. Pharmacol Rep. 2008;60(5):692–8.

    CAS  PubMed  Google Scholar 

  83. Guardia-Laguarta C, Pera M, Lleo A. A gamma-Secretase as a therapeutic target in Alzheimer‘s disease. Curr Drug Targets. 2010;11(4):506–17.

    Article  CAS  PubMed  Google Scholar 

  84. Weggen S et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–6.

    Article  CAS  PubMed  Google Scholar 

  85. Kukar T et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med. 2005;11(5):545–50.

    Article  CAS  PubMed  Google Scholar 

  86. Lleo A et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–6.

    Article  CAS  PubMed  Google Scholar 

  87. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology. 1996;47(2):425–32.

    Article  CAS  PubMed  Google Scholar 

  88. Vlad SC et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008;70(19):1672–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Breitner JC, Baker LD, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011;7(4):402–11.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Jantzen PT, Connor KE, et al. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci. 2002;22(6):246–54.

    Google Scholar 

  91. Martin BK et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008;65(7):896–905.

    Article  PubMed  Google Scholar 

  92. Wolfson C et al. A case-control analysis of nonsteroidal anti-inflammatory drugs and Alzheimer’s disease: are they protective? Neuroepidemiology. 2002;21(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  93. Panza F, Frisardi V, et al. Anti-beta-amyloid immunotherapy for Alzheimer’s disease: focus on bapineuzumab. Curr Alzheimer Res. 2011;8(8):808–17.

    Article  CAS  PubMed  Google Scholar 

  94. DH C. Abeta DNA vaccination for Alzheimer’s disease: focus on disease prevention. CNS Neurol Disord Drug Targets. 2010;9(2):207–16.

    Article  Google Scholar 

  95. Fleisher AS, Chen K, et al. Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol. 2012;11(12):1057–65.

    Article  CAS  PubMed  Google Scholar 

  96. Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006;53(5):484–90.

    Article  PubMed  Google Scholar 

  97. Yermakova AV, O‘Banion MK. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging. 2001;22(6):823–36.

    Article  CAS  PubMed  Google Scholar 

  98. Combrinck M et al. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(1):85–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002;1(5):279–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika M. Reinisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reinisch, V.M., Krause, D.L., Müller, N. (2014). Neuroinflammation in Alzheimer’s Disease. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_9

Download citation

Publish with us

Policies and ethics