Skip to main content

HIV and Cocaine Interplay in HIV-Associated Neurocognitive Disorders

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration

Abstract

While antiretrovirals are becoming the gold standard in HIV care and are effective in suppressing viremia, the relative inability of these drugs to penetrate the blood-brain barrier, the latency of HIV in the tissues, and the increased life span of individuals on therapy often lead to complications of HIV in the central nervous system (CNS) termed as HIV-associated neurocognitive disorders (HAND). Among the individuals inflicted with HAND, almost 30 % have a history of substance abuse. Among the commonly abused drugs, cocaine is the most widely used and has emerged as a key contributor to the seroprevalence and progression of HIV infection. Both epidemiological and laboratory-based studies demonstrate that cocaine promotes HIV replication and has multifaceted deleterious effects on the various cells of the CNS resulting in a disrupted blood-brain barrier, enhanced glial activation, and neurotoxicity. Effects of cocaine alone or in combination with HIV proteins lead to augmented neuropathogenesis. This review summarizes current understanding of the diverse effects of cocaine on the various cells of the CNS and how the drug synergizes with HIV and HIV proteins to exacerbate neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiala M, Gan XH, Zhang L, House SD, Newton T, Graves MC, et al. Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol. 1998;437:199–205.

    Article  CAS  PubMed  Google Scholar 

  2. Larrat EP, Zierler S. Entangled epidemics: cocaine use and HIV disease. J Psychoactive Drugs. 1993;25(3):207–21.

    Article  CAS  PubMed  Google Scholar 

  3. Webber MP, Schoenbaum EE, Gourevitch MN, Buono D, Klein RS. A prospective study of HIV disease progression in female and male drug users. AIDS. 1999;13(2):257–62.

    Article  CAS  PubMed  Google Scholar 

  4. Klein TW, Matsui K, Newton CA, Young J, Widen RE, Friedman H. Cocaine suppresses proliferation of phytohemagglutinin-activated human peripheral blood T-cells. Int J Immunopharmacol. 1993;15(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  5. Mao JT, Huang M, Wang J, Sharma S, Tashkin DP, Dubinett SM. Cocaine down-regulates IL-2-induced peripheral blood lymphocyte IL-8 and IFN-gamma production. Cell Immunol. 1996;172(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  6. Baldwin GC, Tashkin DP, Buckley DM, Park AN, Dubinett SM, Roth MD. Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med. 1997;156(5):1606–13.

    Article  CAS  PubMed  Google Scholar 

  7. Eisenstein TK, Hilburger ME. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol. 1998;83(1–2):36–44.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman H, Newton C, Klein TW. Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev. 2003;16(2):209–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bagasra O, Pomerantz RJ. Human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells in the presence of cocaine. J Infect Dis. 1993;168(5):1157–64.

    Article  CAS  PubMed  Google Scholar 

  10. Peterson PK, Sharp BM, Gekker G, Portoghese PS, Sannerud K, Balfour HH. Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS. 1990;4(9):869–73.

    Article  CAS  PubMed  Google Scholar 

  11. Nair MPN, Mahajan S, Hou J, Sweet AM, Schwartz SA. The stress hormone, cortisol, synergizes with HIV-1 gp-120 to induce apoptosis of normal human peripheral blood mononuclear cells. Cell Mol Biol (Noisy-le-grand). 2000;46(7):1227–38.

    CAS  Google Scholar 

  12. Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC. Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis. 2002;185(5):701–5.

    Article  CAS  PubMed  Google Scholar 

  13. Steele AD, Henderson EE, Rogers TJ. Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology. 2003;309(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  14. Bagasra O, Forman L. Functional analysis of lymphocytes subpopulations in experimental cocaine abuse. I Dose-dependent activation of lymphocyte subsets. Clin Exp Immunol. 1989;77(2):289–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Donahoe RM, Nicholson JK, Madden JJ, Donahoe F, Shafer DA, Gordon D, et al. Coordinate and independent effects of heroin, cocaine, and alcohol abuse on T-cell E-rosette formation and antigenic marker expression. Clin Immunol Immunopathol. 1986;41(2):254–64.

    Article  CAS  PubMed  Google Scholar 

  16. Van Dyke C, Stesin A, Jones R, Chuntharapai A, Seaman W. Cocaine increases natural killer cell activity. J Clin Invest. 1986;77(4):1387–90.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Anthony JC, Vlahov D, Nelson KE, Cohn S, Astemborski J, Solomon L. New evidence on intravenous cocaine use and the risk of infection with human immunodeficiency virus type 1. Am J Epidemiol. 1991;134(10):1175–89.

    CAS  PubMed  Google Scholar 

  18. Baldwin GC, Roth MD, Tashkin DP. Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol. 1998;83(1–2):133–8.

    Article  CAS  PubMed  Google Scholar 

  19. Chaisson RE, Bacchetti P, Osmond D, Brodie B, Sande MA, Moss AR. Cocaine use and HIV infection in intravenous drug users in San Francisco. JAMA. 1989;261(4):561–5.

    Article  CAS  PubMed  Google Scholar 

  20. Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D. Correlates of HIV infection among young adult short-term injection drug users. AIDS. 2000;14(6):717–26.

    Article  CAS  PubMed  Google Scholar 

  21. Chiasson MA, Stoneburner RL, Hildebrandt DS, Ewing WE, Telzak EE, Jaffe HW. Heterosexual transmission of HIV-1 associated with the use of smokable freebase cocaine (crack). AIDS. 1991;5(9):1121–6.

    Article  CAS  PubMed  Google Scholar 

  22. Peterson PK, Gekker G, Chao CC, Schut R, Molitor TW, Balfour HH. Cocaine potentiates HIV-1 replication in human peripheral blood mononuclear cell cocultures. Involvement of transforming growth factor-beta. J Immunol. 1991;146(1):81–4.

    CAS  PubMed  Google Scholar 

  23. Peterson PK, Gekker G, Chao CC, Schut R, Verhoef J, Edelman CK, et al. Cocaine amplifies HIV-1 replication in cytomegalovirus-stimulated peripheral blood mononuclear cell cocultures. J Immunol. 1992;149(2):676–80.

    CAS  PubMed  Google Scholar 

  24. Rosenberg ZF, Fauci AS. Induction of expression of HIV in latently or chronically infected cells. AIDS Res Hum Retroviruses. 1989;5(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  25. Levy JA. Human immunodeficiency viruses and the pathogenesis of AIDS. JAMA. 1989;261(20):2997–3006.

    Article  CAS  PubMed  Google Scholar 

  26. Gallo RC. Mechanism of disease induction by HIV. J Acquir Immune Defic Syndr. 1990;3(4): 380–9.

    CAS  PubMed  Google Scholar 

  27. Drew WL. Cytomegalovirus infection in patients with AIDS. J Infect Dis. 1988;158(2): 449–56.

    Article  CAS  PubMed  Google Scholar 

  28. Jacobson MA, Mills J. Serious cytomegalovirus disease in the acquired immunodeficiency syndrome (AIDS). Clinical findings, diagnosis, and treatment. Ann Intern Med. 1988;108(4): 585–94.

    Article  CAS  PubMed  Google Scholar 

  29. Schooley RT. Cytomegalovirus in the setting of infection with human immunodeficiency virus. Rev Infect Dis. 1990;12 Suppl 7:S811–9.

    Article  PubMed  Google Scholar 

  30. Skolnik PR, Kosloff BR, Hirsch MS. Bidirectional interactions between human immunodeficiency virus type 1 and cytomegalovirus. J Infect Dis. 1988;157(3):508–14.

    Article  CAS  PubMed  Google Scholar 

  31. Dhillon NK, Williams R, Peng F, Tsai YJ, Dhillon S, Nicolay B, et al. Cocaine-mediated enhancement of virus replication in macrophages: implications for human immunodeficiency virus-associated dementia. J Neurovirol. 2007;13(6):483–95.

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131(3):596–610.

    Article  CAS  PubMed  Google Scholar 

  33. Sharkey J, Glen KA, Wolfe S, Kuhar MJ. Cocaine binding at sigma receptors. Eur J Pharmacol. 1988;149(1–2):171–4.

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi T, Su TP. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther. 2003;306(2):718–25.

    Article  CAS  PubMed  Google Scholar 

  35. Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci. 2010;31(12):557–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002;34(3):399–410.

    Article  CAS  PubMed  Google Scholar 

  37. Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, et al. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A. 2010;107(43):18676–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Roth MD, Whittaker KM, Choi R, Tashkin DP, Baldwin GC. Cocaine and sigma-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J Leukoc Biol. 2005;78(6):1198–203.

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds JL, Mahajan SD, Bindukumar B, Sykes D, Schwartz SA, Nair MP. Proteomic analysis of the effects of cocaine on the enhancement of HIV-1 replication in normal human astrocytes (NHA). Brain Res. 2006;1123(1):226–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gekker G, Hu S, Wentland MP, Bidlack JM, Lokensgard JR, Peterson PK. Kappa-opioid receptor ligands inhibit cocaine-induced HIV-1 expression in microglial cells. J Pharmacol Exp Ther. 2004;309(2):600–6.

    Article  CAS  PubMed  Google Scholar 

  41. Gekker G, Hu S, Sheng WS, Rock RB, Lokensgard JR, Peterson PK. Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-beta1. Int Immunopharmacol. 2006;6(6):1029–33.

    Article  CAS  PubMed  Google Scholar 

  42. Brack-Werner R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS. 1999;13(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  43. Canki M, Thai JN, Chao W, Ghorpade A, Potash MJ, Volsky DJ. Highly productive infection with pseudotyped human immunodeficiency virus type 1 (HIV-1) indicates no intracellular restrictions to HIV-1 replication in primary human astrocytes. J Virol. 2001;75(17):7925–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Conant K, Tornatore C, Atwood W, Meyers K, Traub R, Major EO. In vivo and in vitro infection of the astrocyte by HIV-1. Adv Neuroimmunol. 1994;4(3):287–9.

    Article  CAS  PubMed  Google Scholar 

  45. Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol. 2006;80(1):541–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Carroll-Anzinger D, Kumar A, Adarichev V, Kashanchi F, Al-Harthi L. Human immunodeficiency virus-restricted replication in astrocytes and the ability of gamma interferon to modulate this restriction are regulated by a downstream effector of the Wnt signaling pathway. J Virol. 2007;81(11):5864–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009;66(2):253–8.

    Article  PubMed  Google Scholar 

  48. Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–90.

    Article  CAS  PubMed  Google Scholar 

  49. Hansson E, Ronnback L. Glial neuronal signaling in the central nervous system. FASEB J. 2003;17(3):341–8.

    Article  CAS  PubMed  Google Scholar 

  50. Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, et al. Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood. 2010;115(23):4951–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Costa BM, Yao H, Yang L, Buch S. Role of endoplasmic reticulum (er) stress in cocaine-induced microglial cell death. J Neuroimmune Pharmacol. 2013;8(3):705–14.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Fattore L, Puddu MC, Picciau S, Cappai A, Fratta W, Serra GP, et al. Astroglial in vivo response to cocaine in mouse dentate gyrus: a quantitative and qualitative analysis by confocal microscopy. Neuroscience. 2002;110(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Yao H, Lu Y, Wang C, Buch S. Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1) protein gp120. PLoS One. 2010;5(10):e13427.

    Article  PubMed Central  PubMed  Google Scholar 

  54. New DR, Ma M, Epstein LG, Nath A, Gelbard HA. Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures. J Neurovirol. 1997;3(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  55. Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 2000;879(1–2):42–9.

    Article  CAS  PubMed  Google Scholar 

  56. Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, et al. Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience. 2001;102(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  57. Savio T, Levi G. Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures. J Neurosci Res. 1993;34(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  58. Lipton SA, Sucher NJ, Kaiser PK, Dreyer EB. Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron. 1991;7(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410(6831):988–94.

    Article  CAS  PubMed  Google Scholar 

  60. Kaul M, Lipton SA. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A. 1999;96(14):8212–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Turchan J, Anderson C, Hauser KF, Sun Q, Zhang J, Liu Y, et al. Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine. BMC Neurosci. 2001;2(1):3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M, et al. Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr. 2002;31 Suppl 2:S62–9.

    Article  CAS  PubMed  Google Scholar 

  63. Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, et al. Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem. 2002;83(4):955–63.

    Article  CAS  PubMed  Google Scholar 

  64. Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, et al. Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol. 2000;14(3):222–7.

    Article  CAS  PubMed  Google Scholar 

  65. Koutsilieri E, Gotz ME, Sopper S, Sauer U, Demuth M, ter Meulen V, et al. Regulation of glutathione and cell toxicity following exposure to neurotropic substances and human immunodeficiency virus-1 in vitro. J Neurovirol. 1997;3(5):342–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yao H, Allen JE, Zhu X, Callen S, Buch S. Cocaine and human immunodeficiency virus type 1 gp120 mediate neurotoxicity through overlapping signaling pathways. J Neurovirol. 2009;15(2):164–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bagetta G, Piccirilli S, Del Duca C, Morrone LA, Rombola L, Nappi G, et al. Inducible nitric oxide synthase is involved in the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 in the neocortex of rat. Neurosci Lett. 2004;356(3):183–6.

    Article  CAS  PubMed  Google Scholar 

  68. Aksenov MY, Aksenova MV, Nath A, Ray PD, Mactutus CF, Booze RM. Cocaine-mediated enhancement of Tat toxicity in rat hippocampal cell cultures: the role of oxidative stress and D1 dopamine receptor. Neurotoxicology. 2006;27(2):217–28.

    Article  CAS  PubMed  Google Scholar 

  69. Banks WA, Farr SA, Morley JE. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol A Biol Sci Med Sci. 2000;55(12):B601–6.

    Article  CAS  PubMed  Google Scholar 

  70. Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, et al. A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J Immunol. 1997;158(7):3499–510.

    CAS  PubMed  Google Scholar 

  71. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, et al. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol. 1996; 156(3):1284–95.

    CAS  PubMed  Google Scholar 

  72. Gan X, Zhang L, Berger O, Stins MF, Way D, Taub DD, et al. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol. 1999;91(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  73. Lee YW, Hennig B, Fiala M, Kim KS, Toborek M. Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res. 2001;920(1–2):125–33.

    Article  CAS  PubMed  Google Scholar 

  74. Chang SL, Bersig J, Felix B, Fiala M, House SD. Chronic cocaine alters hemodynamics and leukocyte-endothelial interactions in rat mesenteric venules. Life Sci. 2000;66(24):2357–69.

    Article  CAS  PubMed  Google Scholar 

  75. Gan X, Zhang L, Newton T, Chang SL, Ling W, Kermani V, et al. Cocaine infusion increases interferon-gamma and decreases interleukin-10 in cocaine-dependent subjects. Clin Immunol Immunopathol. 1998;89(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  76. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med. 2008;14(7):731–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Yao H, Duan M, Hu G, Buch S. Platelet-derived growth factor B chain is a novel target gene of cocaine-mediated Notch1 signaling: implications for HIV-associated neurological disorders. J Neurosci. 2011;31(35):12449–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants DA020392, DA023397, DA033614, DA024442 (S.B.), and DA030285 (H.Y.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa J. Buch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yao, H., Bethel-Brown, C., Buch, S.J. (2014). HIV and Cocaine Interplay in HIV-Associated Neurocognitive Disorders. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_20

Download citation

Publish with us

Policies and ethics