Skip to main content

Schanuel’s Conjecture

  • Chapter
  • First Online:
Transcendental Numbers
  • 2699 Accesses

Abstract

Schanuel’s Conjecture: Suppose α 1, , α n are complex numbers which are linearly independent over \(\mathbb{Q}\). Then the transcendence degree of the field

$$\displaystyle{\mathbb{Q}(\alpha _{1},\ldots,\alpha _{n},e^{\alpha _{1}},\ldots,e^{\alpha _{n}})}$$

over \(\mathbb{Q}\) is at least n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. J. Ax, On the units of an algebraic number field. Ill. J. Math. 9, 584–589 (1965)

    MATH  MathSciNet  Google Scholar 

  2. J. Ax, On Schanuel’s conjectures. Ann. Math. 93(2), 252–268 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Bertolin, Périodes de 1-motifs et transcendence. J. Number Theory 97(2), 204–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bertrand, D. Masser, Linear forms in elliptic integrals. Invent. Math. 58, 283–288 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. W.D. Brownawell, The algebraic independence of certain numbers related by the exponential function. J. Number Theory 6, 22–31 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. W.D. Brownawell, K.K. Kubota, The algebraic independence of Weierstrass functions and some related numbers. Acta Arith. 33(2), 111–149 (1977)

    MATH  MathSciNet  Google Scholar 

  7. A. Brumer, On the units of algebraic number fields. Mathematika 14, 121–124 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  8. G.V. Chudnovsky, Contributions to the Theory of Transcendental Numbers. Mathematical Surveys and Monographs, vol. 19 (American Mathematical Society, Providence, 1974)

    Google Scholar 

  9. R.F. Coleman, On a stronger version of the Schanuel–Ax theorem. Am. J. Math. 102(4), 595–624 (1980)

    Article  MATH  Google Scholar 

  10. P. Colmez, Résidu en s=1 des fonctions zeta p-adiques. Invent. Math. 91(2), 371–389 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Gun, M. Ram Murty, P. Rath, Transcendental nature of special values of L-functions. Can. J. Math. 63, 136–152 (2011)

    Article  MATH  Google Scholar 

  12. S. Gun, M. Ram Murty, P. Rath, A note on special values of L-functions. Proc. Am. Math. Soc. (to appear)

    Google Scholar 

  13. M. Kontsevich, D. Zagier, Periods, in Mathematics Unlimited-2001 and Beyond (Springer, Berlin, 2001), pp. 771–808

    Google Scholar 

  14. S. Lang, Algebraic Number Theory. Graduate Texts in Mathematics, vol. 110 (Springer, Berlin, 2000)

    Google Scholar 

  15. D. Masser, Elliptic Functions and Transcendence. Lecture Notes in Mathematics, vol. 437 (Springer, Berlin, 1975)

    Google Scholar 

  16. Y.V. Nesterenko, P. Philippon (eds.), Introduction to Algebraic Independence Theory. Lecture Notes in Mathematics, vol. 1752 (Springer, Berlin, 2001)

    Google Scholar 

  17. J. Neukirch, Algebraic Number Theory, vol. 322 (Springer, Berlin, 1999)

    MATH  Google Scholar 

  18. J. Neukirch, A. Schmidt, K. Winberg, Cohomology of Number Fields (Springer, Berlin, 2000)

    MATH  Google Scholar 

  19. P. Philippon, Variétés abéliennes et indépendance algébrique. II. Un analogue abélien du théoréme de Lindemann-Weierstrass. Invent. Math. 72(3), 389–405 (1983)

    MATH  MathSciNet  Google Scholar 

  20. G. Prasad, A. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces. Inst. Hautes Études Sci. Publ. Math. 109, 113–184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Ram Murty, An introduction to Artin L-functions. J. Ramanujan Math. Soc. 16(3), 261–307 (2001)

    MATH  MathSciNet  Google Scholar 

  22. D. Roy, An arithmetic criterion for the values of the exponential function. Acta Arith. 97(2), 183–194 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. H.M. Stark, On complex quadratic fields with class number equal to one. Trans. Am. Math. Soc. 122, 112–119 (1966)

    Article  MATH  Google Scholar 

  24. A. Van der Poorten, A proof that Euler missed Apéry’s proof of the irrationality of ζ(3). Math. Intell. 1(4), 195–203 (1978/1979)

    Google Scholar 

  25. M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, vol. 326 (Springer, Berlin, 2000)

    MATH  Google Scholar 

  26. M. Waldschmidt, Transcendence of periods: the state of the art. Pure Appl. Math. Q. 2(2), 435–463 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Waldschmidt, Elliptic functions and transcendence, in Surveys in Number Theory. Developments in Mathematics, vol. 17 (2008), pp. 143–188

    Google Scholar 

  28. M. Waldschmidt, Solution du huitième problème de Schneider. J. Number Theory 5, 191–202 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Weil, Elliptic Functions According to Eisenstein and Kronecker (Springer, Berlin, 1999)

    MATH  Google Scholar 

  30. D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, vol. 2 (1992), pp. 497–512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murty, M.R., Rath, P. (2014). Schanuel’s Conjecture. In: Transcendental Numbers. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0832-5_21

Download citation

Publish with us

Policies and ethics