Advertisement

Transcendental Numbers

  • M. Ram Murty
  • Purusottam Rath

Table of contents

  1. Front Matter
    Pages i-xiv
  2. M. Ram Murty, Purusottam Rath
    Pages 1-6
  3. M. Ram Murty, Purusottam Rath
    Pages 7-9
  4. M. Ram Murty, Purusottam Rath
    Pages 11-14
  5. M. Ram Murty, Purusottam Rath
    Pages 15-18
  6. M. Ram Murty, Purusottam Rath
    Pages 19-22
  7. M. Ram Murty, Purusottam Rath
    Pages 23-26
  8. M. Ram Murty, Purusottam Rath
    Pages 27-30
  9. M. Ram Murty, Purusottam Rath
    Pages 31-34
  10. M. Ram Murty, Purusottam Rath
    Pages 35-38
  11. M. Ram Murty, Purusottam Rath
    Pages 39-47
  12. M. Ram Murty, Purusottam Rath
    Pages 49-53
  13. M. Ram Murty, Purusottam Rath
    Pages 55-58
  14. M. Ram Murty, Purusottam Rath
    Pages 59-63
  15. M. Ram Murty, Purusottam Rath
    Pages 65-74
  16. M. Ram Murty, Purusottam Rath
    Pages 75-78
  17. M. Ram Murty, Purusottam Rath
    Pages 79-81
  18. M. Ram Murty, Purusottam Rath
    Pages 83-88
  19. M. Ram Murty, Purusottam Rath
    Pages 89-94
  20. M. Ram Murty, Purusottam Rath
    Pages 95-100
  21. M. Ram Murty, Purusottam Rath
    Pages 101-109
  22. M. Ram Murty, Purusottam Rath
    Pages 111-121
  23. M. Ram Murty, Purusottam Rath
    Pages 123-129
  24. M. Ram Murty, Purusottam Rath
    Pages 131-135
  25. M. Ram Murty, Purusottam Rath
    Pages 137-151
  26. M. Ram Murty, Purusottam Rath
    Pages 153-158
  27. M. Ram Murty, Purusottam Rath
    Pages 159-177
  28. M. Ram Murty, Purusottam Rath
    Pages 179-184
  29. M. Ram Murty, Purusottam Rath
    Pages 185-203
  30. Back Matter
    Pages 205-217

About this book

Introduction

This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

Keywords

Baker's theorem Dirichlet L-functions Hermite-Lindemann theorem Schneider-Lang theorem elliptic functions transcendental values

Authors and affiliations

  • M. Ram Murty
    • 1
  • Purusottam Rath
    • 2
  1. 1.Department of Mathematics and StatisticsQueen's UniversityKingstonCanada
  2. 2.Chennai Mathematical InstituteSiruseriIndia

Bibliographic information

Industry Sectors
Pharma
Finance, Business & Banking
Telecommunications
Aerospace