Skip to main content

Advances on Optic Nerve Regeneration and Therapeutic Strategies

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1060 Accesses

Abstract

Optic nerve regeneration has been a challenge for many research groups around the world. It is used as a model to investigate regeneration of the central nervous system (CNS) and is also the subject of study that helps to understand many eyes’ diseases. In the last two decades, an important progress has been made in the optic nerve regeneration field. Lessons from both cellular and molecular levels have taught researchers important mechanisms involved in the failure of nerve fiber regeneration and also retinal ganglion cells (RGCs) death after an injury. These two events are crucial and lead people to blindness, because RGCs are the projecting neurons from the retina which send visual information to the brain. When stimulated, some signaling pathways have already been described as neuroprotective and proregenerative of the optic nerve, although some studies have demonstrated that these two effects can happen by activation of distinct signaling pathways. The goal in the field of optic nerve regeneration is an effective therapy that can promote great levels of RGCs survival and optic nerve regeneration. To reach this goal, researchers have combined different therapeutic strategies and have shown great levels of regeneration, with some studies showing that optic nerve fibers can reenter the brain in sufficient numbers to cause partial recovery of vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATF-3:

Activating transcription factor 3

BDNF:

Brain-derived neurotrophic factor

Bim:

Bcl-2 interacting mediator of cell death

cAMP:

Cyclic adenosine monophosphate

Ch:

Chiasm

CHOP:

CCAAT/enhancer-binding protein-homologous protein

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CP:

Cerebral peduncle

CSPG:

Chondroitin sulfate proteoglycan

CTB:

Cholera toxin B fragment

DLG:

Dorsal lateral geniculate nucleus

dLGN:

Dorsal lateral geniculate nucleus

DLK:

Dual leucine zipper kinase

DRG:

Dorsal root ganglion

FGF2:

Fibroblast growth factor

GAP-43:

Growth associated protein-43

GDNF:

Glial-derived neurotrophic factor

GTPase:

Guanosine triphosphate hydrolase

Jak:

Janus kinase

KLF:

Krüppel-like factor

KSPG:

Keratin sulfate proteoglycan

LAR:

Leukocyte common antigen-related phosphatase

LGN:

Lateral geniculate nucleus

LINGO1:

Leucine rich repeat and Ig domain containing 1

MAG:

Myelin glycoprotein

MAPK:

Mitogen-activated protein kinases

MTN:

Medial terminal nucleus

mTOR:

Mammalian target of rapamycin

NgR:

Nogo receptor

Ocm:

Oncomodulin

Omgp:

Oligodendrocyte-myelin glycoprotein

OMR:

Optomotor response

OPT:

Tract

OPT:

Olivary pretectal nucleus

PI3 kinase:

Phosphatidylinositide 3-kinase

PN:

Peripheral nerve

PNS:

Peripheral nerve system

PTEN:

Phosphatase and tensin homolog

PTPσ:

Transmembrane protein-tyrosine-phosphatase sigma

Puma:

p53 upregulated modulator of apoptosis

RGC:

Retinal ganglion cells

RhoA:

Ras homolog gene family member A, a small GTPase protein

ROCK:

Rho-associated protein kinase

SC:

Superior colliculus

SCN:

Suprachiasmatic nucleus

SOCS3:

Suppressor of cytokine signaling 3

SPRR1A:

Small proline-rich protein 1A

STAT:

Signal transducer and activator of transcription

TROY:

TNF receptor family member

vLGN:

Ventral lateral geniculate nucleus

Zym:

Zymosan

References

  1. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14(7):4368–4374

    CAS  PubMed  Google Scholar 

  2. Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602(2):304–317

    Article  CAS  PubMed  Google Scholar 

  3. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 91(5):1632–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37(4):489–500

    CAS  PubMed  Google Scholar 

  5. Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 95(7):3978–3983

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chierzi S, Strettoi E, Cenni MC, Maffei L (1999) Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 19(19):8367–8376

    CAS  PubMed  Google Scholar 

  7. Chaudhary P, Ahmed F, Quebada P, Sharma SC (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res 67(1):36–45

    Article  CAS  Google Scholar 

  8. Monnier PP et al (2011) Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci 31(29):10494–10505

    Article  CAS  PubMed  Google Scholar 

  9. Miller BR et al (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12(4):387–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tedeschi A, Bradke F (2013) The DLK signalling pathway—a double-edged sword in neural development and regeneration. EMBO Rep (7):605–614

    Google Scholar 

  11. Welsbie DS et al (2013) Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 110(10):4045–4050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Watkins TA et al (2013) DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A 110(10):4039–4044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Park KK et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Aguayo AJ, David S, Bray GM (1981) Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol 95:231–240

    CAS  PubMed  Google Scholar 

  15. Villegas-Perez MP, Vidal-Sanz M, Bray GM, Aguayo AJ (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J Neurosci 8(1):265–280

    CAS  PubMed  Google Scholar 

  16. Carter DA, Bray GM, Aguayo AJ (1989) Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters. J Neurosci 9(11):4042–4050

    CAS  PubMed  Google Scholar 

  17. Keirstead SA et al (1989) Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246(4927):255–257

    Article  CAS  PubMed  Google Scholar 

  18. Carter DA, Bray GM, Aguayo AJ (1998) Regenerated retinal ganglion cell axons form normal numbers of boutons but fail to expand their arbors in the superior colliculus. J Neurocytol 27(3):187–196

    Article  CAS  PubMed  Google Scholar 

  19. Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25(2):147–170

    Article  CAS  PubMed  Google Scholar 

  20. Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615–4626

    CAS  PubMed  Google Scholar 

  21. Fischer D, Petkova V, Thanos S, Benowitz LI (2004) Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 24(40):8726–8740

    Article  CAS  PubMed  Google Scholar 

  22. Yin Y et al (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293

    CAS  PubMed  Google Scholar 

  23. Hauk TG et al (2010) Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest Ophthalmol Vis Sci 51(1):459–464

    Article  PubMed  Google Scholar 

  24. Lorber B, Berry M, Logan A (2005) Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur J Neurosci 21(7):2029–2034

    Article  PubMed  Google Scholar 

  25. Pernet V, Di Polo A (2006) Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 129(Pt 4):1014–1026

    Article  PubMed  Google Scholar 

  26. Yin Y et al (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9(6):843–852

    Article  CAS  PubMed  Google Scholar 

  27. Yin Y et al (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 106(46):19587–19592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kurimoto T et al (2013) Neutrophils express oncomodulin and promote optic nerve regeneration. J Neurosci 33(37):14816–14824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kurimoto T et al (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30(46):15654–15663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Muller A, Hauk TG, Fischer D (2007) Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130(Pt 12):3308–3320

    Article  PubMed  Google Scholar 

  31. Leibinger M et al (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29(45):14334–14341

    Article  PubMed  Google Scholar 

  32. Cohen A, Bray GM, Aguayo AJ (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol 25(8):953–959

    Article  CAS  PubMed  Google Scholar 

  33. Lingor P et al (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131(Pt 1):250–263

    PubMed  Google Scholar 

  34. Smith PD et al (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64(5):617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cen LP et al (2007) Chemotactic effect of ciliary neurotrophic factor on macrophages in retinal ganglion cell survival and axonal regeneration. Invest Ophthalmol Vis Sci 48(9):4257–4266

    Article  PubMed  Google Scholar 

  36. Park KK et al (2009) Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina. Mol Cell Neurosci 41(3):313–324

    Article  CAS  PubMed  Google Scholar 

  37. McKerracher L et al (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4):805–811

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13(3):757–767

    Article  CAS  PubMed  Google Scholar 

  39. Chen MS et al (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439

    Article  CAS  PubMed  Google Scholar 

  40. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444

    Article  CAS  PubMed  Google Scholar 

  41. Wang KC et al (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417(6892):941–944

    Article  CAS  PubMed  Google Scholar 

  42. Moreau-Fauvarque C et al (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23(27):9229–9239

    CAS  PubMed  Google Scholar 

  43. Goldberg JL et al (2004) An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 24(21):4989–4999

    Article  CAS  PubMed  Google Scholar 

  44. Goldberg JL, Klassen MP, Hua Y, Barres BA (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296(5574):1860–1864

    Article  CAS  PubMed  Google Scholar 

  45. Winzeler AM et al (2011) The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci 31(17):6481–6492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911):74–78

    Article  CAS  PubMed  Google Scholar 

  47. Mi S et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228

    Article  CAS  PubMed  Google Scholar 

  48. Park JB et al (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45(3):345–351

    Article  CAS  PubMed  Google Scholar 

  49. Lehmann M et al (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547

    CAS  PubMed  Google Scholar 

  50. Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22(23):10368–10376

    CAS  PubMed  Google Scholar 

  51. Perrot V, Vazquez-Prado J, Gutkind JS (2002) Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 277(45):43115–43120

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6(5):461–467

    CAS  PubMed  Google Scholar 

  53. Shen Y et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952):592–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Fisher D et al (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31(40):14051–14066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dickendesher TL et al (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15(5):703–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22(3):319–330

    Article  CAS  PubMed  Google Scholar 

  57. Schweigreiter R et al (2004) Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol Cell Neurosci 27(2):163–174

    Article  CAS  PubMed  Google Scholar 

  58. Moore DL et al (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Veldman MB, Bemben MA, Thompson RC, Goldman D (2007) Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 312(2):596–612

    Article  CAS  PubMed  Google Scholar 

  60. Veldman MB, Bemben MA, Goldman D (2010) Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Mol Cell Neurosci 43(4):370–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Gaub P et al (2010) HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 17(9):1392–1408

    Article  CAS  PubMed  Google Scholar 

  62. Sun F et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480(7377):372–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fischer D, He Z, Benowitz LI (2004) Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci 24(7):1646–1651

    Article  CAS  PubMed  Google Scholar 

  64. Pernet V et al (2013) Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis 4:e734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. de Lima S et al (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109(23):9149–9154

    Article  PubMed Central  PubMed  Google Scholar 

  66. de Lima S, Habboub G, Benowitz LI (2012) Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int Rev Neurobiol 106:153–172

    Article  PubMed  Google Scholar 

  67. Li D, Field PM, Yoshioka N, Raisman G (1994) Axons regenerate with correct specificity in horizontal slice culture of the postnatal rat entorhino-hippocampal system. Eur J Neurosci 6(6):1026–1037

    Article  CAS  PubMed  Google Scholar 

  68. Li D, Field PM, Raisman G (1996) Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture. Exp Neurol 142(1):151–160

    Article  CAS  PubMed  Google Scholar 

  69. Zhou W, Raisman G, Zhou C (1998) Transplanted embryonic entorhinal neurons make functional synapses in adult host hippocampus. Brain Res 788(1–2):202–206

    Article  CAS  PubMed  Google Scholar 

  70. Luo X et al (2013) Three-dimensional evaluation of retinal ganglion cell axon regeneration and path finding in whole mouse tissue after injury. Exp Neurol 247:653–662

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silmara de Lima or Larry I. Benowitz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Lima, S., Koriyama, Y., Kurimoto, T., Benowitz, L.I. (2014). Advances on Optic Nerve Regeneration and Therapeutic Strategies. In: Pébay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_12

Download citation

Publish with us

Policies and ethics