Skip to main content

Trabecular Meshwork Stem Cells

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Glaucoma is the second leading cause of irreversible blindness worldwide. The major risk factor for most glaucoma patients, and the focus of treatment, is increased intraocular pressure (IOP). Reduced cellularity within the trabecular meshwork (TM) is observed with age and correlates with increased outflow resistance and elevated IOP. Long-term augmentation of aqueous humor outflow facility to control IOP may be an important avenue for the prevention of glaucomatous optic nerve damage.

In this chapter, we review the anatomy and cells of the TM, describe the methods to isolate and identify the TM stem cells (TMSCs), and introduce the characteristics of TMSCs and applications of TMSCs for glaucoma research and possible clinical applications. We have found that stem cells from the TM are multipotent with the ability to differentiate to several cell types including phagocytic TM-like cells. After injection into normal mouse anterior chamber, human TMSCs are able to home to mouse TM tissue without obvious inflammatory response. The ability of TMSCs to home to the TM region and differentiate into phagocytic TM cells suggests a potential of stem cell-based therapy for reconstruction of the TM and aqueous outflow facility for glaucoma treatment. TMSC studies may provide pharmacological approaches for TM tissue reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2:

ATP-binding cassette transporter G family member 2

AQP1:

Aquaporin 1

BrdU:

Bromodeoxyuridine

CHI3L1:

Chitinase 3-like 1

DMEM:

Dulbecco’s modified eagle’s medium

DMEM/F12:

Dulbecco’s modified eagle’s medium/nutrient mixture F-12

FACS:

Fluorescence activated cell sorting

FBS:

Fetal bovine serum

IOP:

Intraocular pressure

JCT:

Juxtacanalicular connective tissue

MGP:

Matrix Gla protein

POAG:

Primary open angle glaucoma

SC:

Schlemm’s canal

SCGM:

Stem cell growth medium

SP:

Side population

TM:

Trabecular meshwork

TMSC:

Trabecular meshwork stem cells

References

  1. Gupta D (2004) Glaucoma diagnosis and management. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  2. Alvarado J, Murphy C, Polansky J, Juster R (1981) Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21:714–727

    CAS  PubMed  Google Scholar 

  3. Tripathi RC (1977) Pathologic anatomy in the outflow pathway of aqueous humour in chronic simple glaucoma. Exp Eye Res 25(Suppl):403–407

    Article  PubMed  Google Scholar 

  4. Lutjen-Drecoll E (2005) Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res 81:1–4

    Article  PubMed  Google Scholar 

  5. He Y, Leung KW, Zhang YH, Duan S, Zhong XF, Jiang RZ, Peng Z, Tombran-Tink J, Ge J (2008) Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49:1447–1458

    Article  PubMed  Google Scholar 

  6. Alvarado J, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91:564–579

    Article  CAS  PubMed  Google Scholar 

  7. Clark AF, Brotchie D, Read AT, Hellberg P, English-Wright S, Pang IH, Ethier CR, Grierson I (2005) Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue. Cell Motil Cytoskeleton 60:83–95

    Article  CAS  PubMed  Google Scholar 

  8. Read AT, Chan DW, Ethier CR (2006) Actin structure in the outflow tract of normal and glaucomatous eyes. Exp Eye Res 82:974–985

    Article  CAS  PubMed  Google Scholar 

  9. Hoare MJ, Grierson I, Brotchie D, Pollock N, Cracknell K, Clark AF (2009) Cross-linked actin networks (CLANs) in the trabecular meshwork of the normal and glaucomatous human eye in situ. Invest Ophthalmol Vis Sci 50:1255–1263

    Article  PubMed  Google Scholar 

  10. Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond) 18:1066–1074

    Article  CAS  Google Scholar 

  11. Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12:502–508

    Article  CAS  PubMed  Google Scholar 

  12. Sit AJ, Coloma FM, Ethier CR, Johnson M (1997) Factors affecting the pores of the inner wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci 38:1517–1525

    CAS  PubMed  Google Scholar 

  13. Epstein DL, Rohen JW (1991) Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci 32:160–171

    CAS  PubMed  Google Scholar 

  14. Grant WM (1951) Clinical measurements of aqueous outflow. Am J Ophthalmol 34:1603–1605

    CAS  PubMed  Google Scholar 

  15. Johnson M, Chan D, Read AT, Christensen C, Sit A, Ethier CR (2002) The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci 43:2950–2955

    PubMed  Google Scholar 

  16. Van Buskirk EM (1989) The anatomy of the limbus. Eye (Lond) 3(Pt 2):101–108

    Article  Google Scholar 

  17. Grant WM (1963) Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol 69:783–801

    Article  CAS  PubMed  Google Scholar 

  18. Mc EW (1958) Application of Poiseuille’s law to aqueous outflow. AMA Arch Ophthalmol 60:290–294

    Article  Google Scholar 

  19. Johnson M (2006) What controls aqueous humour outflow resistance? Exp Eye Res 82:545–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ethier CR (2002) The inner wall of Schlemm’s canal. Exp Eye Res 74:161–172

    Article  PubMed  Google Scholar 

  21. Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS (2009) Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 88:747–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Buller C, Johnson DH, Tschumper RC (1990) Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci 31:2156–2163

    CAS  PubMed  Google Scholar 

  23. Stamer WD, Seftor RE, Snyder RW, Regan JW (1995) Cultured human trabecular meshwork cells express aquaporin-1 water channels. Curr Eye Res 14:1095–1100

    Article  CAS  PubMed  Google Scholar 

  24. Alvarado JA, Yeh RF, Franse-Carman L, Marcellino G, Brownstein MJ (2005) Interactions between endothelia of the trabecular meshwork and of Schlemm’s canal: a new insight into the regulation of aqueous outflow in the eye. Trans Am Ophthalmol Soc 103:148–162; discussion 162–143

    PubMed Central  PubMed  Google Scholar 

  25. Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56

    CAS  PubMed  Google Scholar 

  26. Acott TS, Samples JR, Bradley JM, Bacon DR, Bylsma SS, Van Buskirk EM (1989) Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol 107:1–6

    CAS  PubMed  Google Scholar 

  27. Gonzalez P, Epstein DL, Luna C, Liton PB (2006) Characterization of free-floating spheres from human trabecular meshwork (HTM) cell culture in vitro. Exp Eye Res 82:959–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR (2007) Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis 13:1984–2000

    CAS  PubMed  Google Scholar 

  29. Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo AC, Wong D (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743

    Article  PubMed Central  PubMed  Google Scholar 

  30. Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS (2012) Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci 53:1566–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tay CY, Sathiyanathan P, Chu SW, Stanton LW, Wong TT (2012) Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev 21:1381–1390

    Article  CAS  PubMed  Google Scholar 

  32. Du Y, Yun H, Yang E, Schuman JS (2013) Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci 54:1450–1459

    Article  CAS  PubMed  Google Scholar 

  33. Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M (2013) Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett 541:43–48

    Article  CAS  PubMed  Google Scholar 

  34. Tripathi RC, Tripathi BJ (1982) Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Exp Eye Res 35:611–624

    Article  CAS  PubMed  Google Scholar 

  35. Mimura T, Joyce NC (2006) Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci 47:1387–1396

    Article  PubMed  Google Scholar 

  36. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  CAS  PubMed  Google Scholar 

  37. Telford WG, Bradford J, Godfrey W, Robey RW, Bates SE (2007) Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem Cells 25:1029–1036

    Article  CAS  PubMed  Google Scholar 

  38. Du Y, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275

    Article  PubMed Central  PubMed  Google Scholar 

  39. Reagan MR, Kaplan DL (2011) Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 29:920–927

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8:243–250

    Article  CAS  PubMed  Google Scholar 

  41. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC (2012) Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012:342968

    Article  PubMed Central  PubMed  Google Scholar 

  42. Chen FM, Wu LA, Zhang M, Zhang R, Sun HH (2011) Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials 32:3189–3209

    Article  CAS  PubMed  Google Scholar 

  43. Collinson JM, Quinn JC, Hill RE, West JD (2003) The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol 255:303–312

    Article  CAS  PubMed  Google Scholar 

  44. Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL (2005) PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J 19:1371–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2:e1272

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK (2011) Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim Biophys Acta 1815:224–240

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71:61–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Challa P, Gonzalez P, Liton PB, Caballero M, Epstein DL (2003) Gene expression profile in a novel cell type in primary cultures of human trabecular meshwork. Invest Ophthalmol Vis Sci 44:E-Abstract 3164

    Google Scholar 

  49. Stamer WD, Snyder RW, Smith BL, Agre P, Regan JW (1994) Localization of aquaporin CHIP in the human eye: implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest Ophthalmol Vis Sci 35:3867–3872

    CAS  PubMed  Google Scholar 

  50. Xue W, Comes N, Borras T (2007) Presence of an established calcification marker in trabecular meshwork tissue of glaucoma donors. Invest Ophthalmol Vis Sci 48:3184–3194

    Article  PubMed Central  PubMed  Google Scholar 

  51. Vittitow J, Borras T (2004) Genes expressed in the human trabecular meshwork during pressure-induced homeostatic response. J Cell Physiol 201:126–137

    Article  CAS  PubMed  Google Scholar 

  52. Liton PB, Lin Y, Luna C, Gonzalez P, Epstein DL (2009) Identification of genes differentially expressed by chitinase 3-like 1 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 50:E-Abstract 4859

    Google Scholar 

  53. Fong EL, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32:395–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    Article  CAS  PubMed  Google Scholar 

  55. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  CAS  PubMed  Google Scholar 

  56. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1:2

    Article  PubMed Central  PubMed  Google Scholar 

  57. Popp FC, Eggenhofer E, Renner P, Geissler EK, Piso P, Schlitt HJ, Dahlke MH (2009) Mesenchymal stem cells can affect solid organ allograft survival. Transplantation 87:S57–S62

    Article  PubMed  Google Scholar 

  58. Yu M, Sun J, Peng W, Chen Z, Lin X, Liu X, Li M, Wu K (2010) Protein expression in human trabecular meshwork: downregulation of RhoGDI by dexamethasone in vitro. Mol Vis 16:213–223

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement 

The work was supported by an anonymous philanthropic donation to YD, National Institutes of Health Grant P30-EY008098, Eye and Ear Foundation (Pittsburgh, PA) and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqin Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yun, H., Schuman, J.S., Du, Y. (2014). Trabecular Meshwork Stem Cells. In: Pébay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_10

Download citation

Publish with us

Policies and ethics