Skip to main content

Oxidative Stress and Pulmonary Vascular Disorders

  • Chapter
  • First Online:
Studies on Pediatric Disorders

Abstract

When reactive oxygen species (ROS) production exceeds the antioxidant quenching capacity, the resulting condition is termed oxidative stress. Normally, oxidative stress triggers a compensatory increase in the major antioxidant enzymes: superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). However, multiple studies in humans and animals have shown that the overproduction of ROS coupled with the failure of the antioxidant ROS scavenging system contributes to the pathogenesis of numerous pediatric vascular disorders including pulmonary hypertension (PH), respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), and sickle cell disease (SCD). Vascular ROS are generated by nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) in cellular membranes, by xanthine oxidase (XO) in the cytosol, and by mitochondria themselves. In addition, low tetrahydrobiopterin (BH4), the rate-limiting cofactor for endothelial nitric oxide synthase (eNOS) function, uncouples the enzyme and decreases nitric oxide (NO) and increases ROS production. Boosting antioxidants and suppressing ROS production are now important therapeutic goals in the management of vascular pathologies in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMA:

Asymmetrical dimethylarginine

BH4 :

Tetrahydrobiopterin

BPD:

Bronchopulmonary dysplasia

CHD:

Congenital heart disease

CPAP:

Continuous positive airway pressure

CrAT:

Carnitine acetyltransferase

DUOX:

Dual oxidase

eNOS:

Endothelial NOS

ET-1:

Endothelin-1

FAD:

Flavin adenine dinucleotide

GPx:

Glutathione peroxidase

GSH:

Glutathione

GS-SG:

Glutathione disulfide

iNOS:

Inducible NOS

IPAH:

Idiopathic pulmonary arterial hypertension

NAC:

N-acetylcysteine

NAD+:

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide, reduced form

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

p47phox :

Protein 47 kD phagocyte oxidase

p67phox :

Protein 67 kD phagocyte oxidase

PAEC:

Pulmonary artery endothelial cells

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary artery pressure

PASMC:

Pulmonary artery smooth muscle cells

PBF:

Pulmonary blood flow

PEG:

Polyethylene glycol

PH:

Pulmonary hypertension

PPHN:

Persistent pulmonary hypertension of the newborn

PVR:

Pulmonary vascular resistance

RDS:

Respiratory distress syndrome

ROP:

Retinopathy of prematurity

ROS:

Reactive oxygen species

SCD:

Sickle cell disease

SO2 :

Sulfur dioxide

SOD:

Superoxide dismutase

UCP-2:

Uncoupling protein-2

VEGF:

Vascular endothelial growth factor

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  1. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101(3):258–267

    CAS  PubMed  Google Scholar 

  2. Babior BM (2000) The NADPH oxidase of endothelial cells. IUBMB Life 50(4–5):267–269

    CAS  PubMed  Google Scholar 

  3. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59(9):1428–1459

    CAS  PubMed  Google Scholar 

  4. Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N, Grimminger F, Seeger W, Rose F, Hanze J (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10(10):1687–1698

    CAS  PubMed  Google Scholar 

  5. McRipley RJ, Sbarra AJ (1967) Role of the phagocyte in host-parasite interactions. XI. Relationship between stimulated oxidative metabolism and hydrogen peroxide formation, and intracellular killing. J Bacteriol 94(5):1417–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    CAS  PubMed  Google Scholar 

  7. Auten RL, Mason SN, Auten KM, Brahmajothi M (2009) Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice. Am J Physiol Lung Cell Mol Physiol 297(1):L134–L142

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Carnesecchi S, Deffert C, Pagano A, Garrido-Urbani S, Metrailler-Ruchonnet I, Schappi M, Donati Y, Matthay MA, Krause KH, Barazzone Argiroffo C (2009) NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 180(10):972–981

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan TH, Mitchell PO, Sutliff RL, Hart CM (2009) The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40(5):601–609

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2008) Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295(5):L881–L888

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297(4):L596–L607

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Oishi PE, Sharma S, Datar SA, Kumar S, Aggarwal S, Lu Q, Raff G, Azakie A, Hsu JH, Sajti E, Fratz S, Black SM, Fineman JR (2013) Rosiglitazone preserves pulmonary vascular function in lambs with increased pulmonary blood flow. Pediatr Res 73(1):54–61

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Pollock DM (2005) Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension 45(4):477–480

    CAS  PubMed  Google Scholar 

  14. Remuzzi G, Perico N, Benigni A (2002) New therapeutics that antagonize endothelin: promises and frustrations. Nat Rev Drug Discov 1(12):986–1001

    CAS  PubMed  Google Scholar 

  15. Alexander BT, Cockrell KL, Rinewalt AN, Herrington JN, Granger JP (2001) Enhanced renal expression of preproendothelin mRNA during chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol 280(5):R1388–R1392

    CAS  PubMed  Google Scholar 

  16. Abdel-Sayed S, Nussberger J, Aubert JF, Gohlke P, Brunner HR, Brakch N (2003) Measurement of plasma endothelin-1 in experimental hypertension and in healthy subjects. Am J Hypertens 16(7):515–521

    CAS  PubMed  Google Scholar 

  17. Wedgwood S, Steinhorn RH, Bunderson M, Wilham J, Lakshminrusimha S, Brennan LA, Black SM (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 289(4):L660–L666

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Rafikova O, Rafikov R, Kumar S, Sharma S, Aggarwal S, Schneider F, Jonigk D, Black SM, Tofovic SP (2013) Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonary hypertension. Free Radic Biol Med 56:28–43

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH (2013) Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 18(14):1765–1776

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ovadia B, Bekker JM, Fitzgerald RK, Kon A, Thelitz S, Johengen MJ, Hendricks-Munoz K, Gerrets R, Black SM, Fineman JR (2002) Nitric oxide-endothelin-1 interactions after acute ductal constriction in fetal lambs. Am J Physiol Heart Circ Physiol 282(3):H862–H871

    CAS  PubMed  Google Scholar 

  21. Bindoli A, Cavallini L, Rigobello MP, Coassin M, Di Lisa F (1988) Modification of the xanthine-converting enzyme of perfused rat heart during ischemia and oxidative stress. Free Radic Biol Med 4(3):163–167

    CAS  PubMed  Google Scholar 

  22. Friedl HP, Smith DJ, Till GO, Thomson PD, Louis DS, Ward PA (1990) Ischemia–reperfusion in humans. Appearance of xanthine oxidase activity. Am J Pathol 136(3):491–495

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Supnet MC, David-Cu R, Walther FJ (1994) Plasma xanthine oxidase activity and lipid hydroperoxide levels in preterm infants. Pediatr Res 36(3):283–287

    CAS  PubMed  Google Scholar 

  24. Porter KB, O’Brien WF, Benoit R (1992) Comparison of cord purine metabolites to maternal and neonatal variables of hypoxia. Obstet Gynecol 79(3):394–397

    CAS  PubMed  Google Scholar 

  25. Karmazsin L, Balla G (1985) Plasma hypoxanthine and xanthine levels in the early newborn period in problem-free preterm babies and those with idiopathic respiratory distress syndrome. Acta Paediatr Hung 26(1):1–9

    CAS  PubMed  Google Scholar 

  26. Boda D, Nemeth I (1989) Measurement of urinary caffeine metabolites reflecting the “in vivo” xanthine oxidase activity in premature infants with RDS and in hypoxic states of children. Biomed Biochim Acta 48(2–3):S31–S35

    CAS  PubMed  Google Scholar 

  27. Contreras M, Hariharan N, Lewandoski JR, Ciesielski W, Koscik R, Zimmerman JJ (1996) Bronchoalveolar oxyradical inflammatory elements herald bronchopulmonary dysplasia. Crit Care Med 24(1):29–37

    CAS  PubMed  Google Scholar 

  28. Phan SH, Gannon DE, Ward PA, Karmiol S (1992) Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: evidence of a role for elastase. Am J Respir Cell Mol Biol 6(3):270–278

    CAS  PubMed  Google Scholar 

  29. Nemeth I, Boda D (2001) Xanthine oxidase activity and blood glutathione redox ratio in infants and children with septic shock syndrome. Intensive Care Med 27(1):216–221

    CAS  PubMed  Google Scholar 

  30. Aslan M, Ryan TM, Adler B, Townes TM, Parks DA, Thompson JA, Tousson A, Gladwin MT, Patel RP, Tarpey MM, Batinic-Haberle I, White CR, Freeman BA (2001) Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci U S A 98(26):15215–15220

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Saugstad OD, Rognum TO (1988) High postmortem levels of hypoxanthine in the vitreous humor of premature babies with respiratory distress syndrome. Pediatrics 81(3):395–398

    CAS  PubMed  Google Scholar 

  32. Russell GA, Jeffers G, Cooke RW (1992) Plasma hypoxanthine: a marker for hypoxic-ischaemic induced periventricular leucomalacia? Arch Dis Child 67(4 Spec No):388–392

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Perlman JM, Risser R (1998) Relationship of uric acid concentrations and severe intraventricular hemorrhage/leukomalacia in the premature infant. J Pediatr 132(3 Pt 1):436–439

    CAS  PubMed  Google Scholar 

  34. Nagaya N, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, Yamagishi M, Kunieda T, Miyatake K (1999) Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med 160(2):487–492

    CAS  PubMed  Google Scholar 

  35. Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF (2000) Hyperuricemia in severe pulmonary hypertension. Chest 117(1):19–24

    CAS  PubMed  Google Scholar 

  36. Jiang X, Han ZY, Wang Y, Xu XQ, Ma CR, Wu Y, Pan L, Jing ZC (2008) Hemodynamic variables and clinical features correlated with serum uric acid in patients with pulmonary arterial hypertension. Chin Med J (Engl) 121(24):2497–2503

    Google Scholar 

  37. Njaman W, Iesaki T, Iwama Y, Takasaki Y, Daida H (2007) Serum uric acid as a prognostic predictor in pulmonary arterial hypertension with connective tissue disease. Int Heart J 48(4):523–532

    CAS  PubMed  Google Scholar 

  38. Van Albada ME, Loot FG, Fokkema R, Roofthooft MT, Berger RM (2008) Biological serum markers in the management of pediatric pulmonary arterial hypertension. Pediatr Res 63(3):321–327

    PubMed  Google Scholar 

  39. Gabrielli LA, Castro PF, Godoy I, Mellado R, Bourge RC, Alcaino H, Chiong M, Greig D, Verdejo HE, Navarro M, Lopez R, Toro B, Quiroga C, Diaz-Araya G, Lavandero S, Garcia L (2011) Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. J Card Fail 17(12):1012–1017

    CAS  PubMed  Google Scholar 

  40. Spiekermann S, Schenk K, Hoeper MM (2009) Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension. Eur Respir J 34(1):276

    CAS  PubMed  Google Scholar 

  41. Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T (1995) Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76(5):922–924

    CAS  PubMed  Google Scholar 

  42. Stefano GB, Cadet P, Breton C, Goumon Y, Prevot V, Dessaint JP, Beauvillain JC, Roumier AS, Welters I, Salzet M (2000) Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor. Blood 95(12):3951–3958

    CAS  PubMed  Google Scholar 

  43. Faehling M, Kroll J, Fohr KJ, Fellbrich G, Mayr U, Trischler G, Waltenberger J (2002) Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of carboxyamidotriazole. FASEB J 16(13):1805–1807

    CAS  PubMed  Google Scholar 

  44. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, Zapol WM (1997) Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81(1):34–41

    CAS  PubMed  Google Scholar 

  45. Ambalavanan N, Mariani G, Bulger A, Philips IJ (1999) Role of nitric oxide in regulating neonatal porcine pulmonary artery smooth muscle cell proliferation. Biol Neonate 76(5):291–300

    CAS  PubMed  Google Scholar 

  46. Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JX (2002) Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 282(1):H184–H193

    CAS  PubMed  Google Scholar 

  47. Kourembanas S, McQuillan LP, Leung GK, Faller DV (1993) Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92(1):99–104

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333(4):214–221

    CAS  PubMed  Google Scholar 

  49. d’Uscio LV (2011) eNOS uncoupling in pulmonary hypertension. Cardiovasc Res 92(3):359–360

    PubMed  Google Scholar 

  50. Villanueva ME, Zaher FM, Svinarich DM, Konduri GG (1998) Decreased gene expression of endothelial nitric oxide synthase in newborns with persistent pulmonary hypertension. Pediatr Res 44(3):338–343

    CAS  PubMed  Google Scholar 

  51. Gonzalez A, Fabres J, D’Apremont I, Urcelay G, Avaca M, Gandolfi C, Kattan J (2010) Randomized controlled trial of early compared with delayed use of inhaled nitric oxide in newborns with a moderate respiratory failure and pulmonary hypertension. J Perinatol 30(6):420–424

    CAS  PubMed  Google Scholar 

  52. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, Gladwin MT (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389

    CAS  PubMed  Google Scholar 

  53. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, Schimel DM, Cochard AE, Wang X, Schechter AN, Noguchi CT, Gladwin MT (2007) Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood 109(7):3088–3098

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Morris CR, Morris SM Jr, Hagar W, Van Warmerdam J, Claster S, Kepka-Lenhart D, Machado L, Kuypers FA, Vichinsky EP (2003) Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med 168(1):63–69

    PubMed  Google Scholar 

  55. Weiner DL, Hibberd PL, Betit P, Cooper AB, Botelho CA, Brugnara C (2003) Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease. JAMA 289(9):1136–1142

    CAS  PubMed  Google Scholar 

  56. Machado RF, Martyr S, Kato GJ, Barst RJ, Anthi A, Robinson MR, Hunter L, Coles W, Nichols J, Hunter C, Sachdev V, Castro O, Gladwin MT (2005) Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol 130(3):445–453

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Afshar S, Gibson LL, Yuhanna IS, Sherman TS, Kerecman JD, Grubb PH, Yoder BA, McCurnin DC, Shaul PW (2003) Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease. Am J Physiol Lung Cell Mol Physiol 284(5):L749–L758

    CAS  PubMed  Google Scholar 

  58. Banks BA, Ischiropoulos H, McClelland M, Ballard PL, Ballard RA (1998) Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics 101(5):870–874

    CAS  PubMed  Google Scholar 

  59. Sosenko IR, Bancalari E (2010) NO for preterm infants at risk of bronchopulmonary dysplasia. Lancet 376(9738):308–310

    PubMed  Google Scholar 

  60. Blomgren K, Zhu C, Hallin U, Hagberg H (2003) Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem Biophys Res Commun 304(3):551–559

    CAS  PubMed  Google Scholar 

  61. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40(6):511–526

    CAS  PubMed  Google Scholar 

  62. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25(4):365–451

    CAS  PubMed  Google Scholar 

  63. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102

    CAS  PubMed  Google Scholar 

  64. Moreira PI, Santos MS, Moreno AM, Proenca T, Seica R, Oliveira CR (2004) Effect of streptozotocin-induced diabetes on rat brain mitochondria. J Neuroendocrinol 16(1):32–38

    CAS  PubMed  Google Scholar 

  65. Nishio Y, Kanazawa A, Nagai Y, Inagaki H, Kashiwagi A (2004) Regulation and role of the mitochondrial transcription factor in the diabetic rat heart. Ann N Y Acad Sci 1011:78–85

    CAS  PubMed  Google Scholar 

  66. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Barclay AR, Sholler G, Christodolou J, Shun A, Arbuckle S, Dorney S, Stormon MO (2005) Pulmonary hypertension—a new manifestation of mitochondrial disease. J Inherit Metab Dis 28(6):1081–1089

    CAS  PubMed  Google Scholar 

  68. Venditti CP, Harris MC, Huff D, Peterside I, Munson D, Weber HS, Rome J, Kaye EM, Shanske S, Sacconi S, Tay S, DiMauro S, Berry GT (2004) Congenital cardiomyopathy and pulmonary hypertension: another fatal variant of cytochrome-c oxidase deficiency. J Inherit Metab Dis 27(6):735–739

    CAS  PubMed  Google Scholar 

  69. Sproule DM, Dyme J, Coku J, de Vinck D, Rosenzweig E, Chung WK, De Vivo DC (2008) Pulmonary artery hypertension in a child with MELAS due to a point mutation of the mitochondrial tRNA((Leu)) gene (m.3243A > G). J Inherit Metab Dis 1–7

    Google Scholar 

  70. Tribe RM, Poston L (1996) Oxidative stress and lipids in diabetes: a role in endothelium vasodilator dysfunction? Vasc Med 1(3):195–206

    CAS  PubMed  Google Scholar 

  71. Ronson RS, Nakamura M, Vinten-Johansen J (1999) The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 44(1):47–59

    CAS  PubMed  Google Scholar 

  72. Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287(32):27255–27264

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75(4):770–781

    CAS  PubMed  Google Scholar 

  74. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641

    CAS  PubMed  Google Scholar 

  75. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95(8):830–840

    CAS  PubMed  Google Scholar 

  76. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104(27):11418–11423

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX (2008) Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 45(9):1223–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88(12):1259–1266

    CAS  PubMed  Google Scholar 

  79. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91(8):719–726

    CAS  PubMed  Google Scholar 

  80. Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N, Braun-Dullaeus RC, Kummer W (2003) Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 284(5):L710–L719

    CAS  PubMed  Google Scholar 

  81. Sud N, Wells SM, Sharma S, Wiseman DA, Wilham J, Black SM (2008) Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction. Am J Physiol Cell Physiol 294(6):C1407–C1418

    CAS  PubMed  Google Scholar 

  82. Sun X, Fratz S, Sharma S, Hou Y, Rafikov R, Kumar S, Rehmani I, Tian J, Smith A, Schreiber C, Reiser J, Naumann S, Haag S, Hess J, Catravas JD, Patterson C, Fineman JR, Black SM (2011) C-terminus of heat shock protein 70-interacting protein-dependent GTP cyclohydrolase I degradation in lambs with increased pulmonary blood flow. Am J Respir Cell Mol Biol 45(1):163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sharma S, Sud N, Wiseman DA, Carter AL, Kumar S, Hou Y, Rau T, Wilham J, Harmon C, Oishi P, Fineman JR, Black SM (2008) Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 294(1):L46–L56

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sharma S, Black SM (2009) Carnitine homeostasis, mitochondrial function, and cardiovascular disease. Drug Discov Today Dis Mech 6(1–4):e31–e39

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Matsuishi T, Stumpf DA, Seliem M, Eguren LA, Chrislip K (1991) Propionate mitochondrial toxicity in liver and skeletal muscle: acyl CoA levels. Biochem Med Metab Biol 45(2):244–253

    CAS  PubMed  Google Scholar 

  86. Pande SV, Blanchaer MC (1971) Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 246(2):402–411

    CAS  PubMed  Google Scholar 

  87. Shug AL, Shrago E, Bittar N, Folts JD, Koke JR (1975) Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 228(3):689–692

    CAS  PubMed  Google Scholar 

  88. Stumpf DA, McAfee J, Parks JK, Eguren L (1980) Propionate inhibition of succinate: CoA ligase (GDP) and the citric acid cycle in mitochondria. Pediatr Res 14(10):1127–1131

    CAS  PubMed  Google Scholar 

  89. Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 99(4):1876–1881

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN (2002) Feeding acetyl-l-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci U S A 99(4):1870–1875

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sharma S, Sun X, Kumar S, Rafikov R, Aramburo A, Kalkan G, Tian J, Rehmani I, Kallarackal S, Fineman JR, Black SM (2012) Preserving mitochondrial function prevents the proteasomal degradation of GTP cyclohydrolase I. Free Radic Biol Med 53(2):216–229

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Sun X, Sharma S, Fratz S, Kumar S, Rafikov R, Aggarwal S, Rafikova O, Lu Q, Burns T, Dasarathy S, Wright J, Schreiber C, Radman M, Fineman JR, Black SM (2013) Disruption of endothelial cell mitochondrial bioenergetics in lambs with increased pulmonary blood flow. Antioxid Redox Signal 18(14):1739–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Rafikov R, Rafikova O, Aggarwal S, Gross C, Desai J, Fulton D, Black SM (2013) Asymmetric dimethylarginine induces endothelial nitric oxide synthase mitochondrial redistribution through the nitration-mediated activation of Akt1. J Biol Chem 288(9):6212–6226

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 210(3):271–284

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S, Oishi PE, Datar SA, Raff G, Xoinis K, Kalkan G, Fratz S, Fineman JR, Black SM (2013) l-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr Res 74(1):39–47

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44(4):381–386

    CAS  PubMed  Google Scholar 

  97. Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92(6):683–691

    CAS  PubMed  Google Scholar 

  98. Wedgwood S, Lakshminrusimha S, Fukai T, Russell JA, Schumacker PT, Steinhorn RH (2011) Hydrogen peroxide regulates extracellular superoxide dismutase activity and expression in neonatal pulmonary hypertension. Antioxid Redox Signal 15(6):1497–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Fike CD, Aschner JL, Zhang Y, Salvemini D, Kaplowitz MR (2005) Superoxide and chronic hypoxia-induced pulmonary hypertension in newborn piglets. Chest 128(6 Suppl):555S–556S

    PubMed  Google Scholar 

  100. Sharma S, Grobe AC, Wiseman DA, Kumar S, Englaish M, Najwer I, Benavidez E, Oishi P, Azakie A, Fineman JR, Black SM (2007) Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. Am J Physiol Lung Cell Mol Physiol 293(4):L960–L971

    CAS  PubMed  Google Scholar 

  101. Asano M, Mishima A, Takeuchi Y, Usami S, Kotani H, Suzuki Y, Yura J (1993) [Lipid peroxide and free radical scavengers in congenital heart disease with pulmonary hypertension]. Nihon Geka Gakkai Zasshi 94(12):1299–1304 (in Japanese)

    CAS  PubMed  Google Scholar 

  102. Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med 158(3):917–923

    CAS  PubMed  Google Scholar 

  103. Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169(6):764–769

    PubMed  Google Scholar 

  104. Masri FA, Comhair SA, Dostanic-Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC (2008) Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 1(2):99–106

    CAS  PubMed  Google Scholar 

  105. Mata M, Sarrion I, Milian L, Juan G, Ramon M, Naufal D, Gil J, Ridocci F, Fabregat-Andres O, Cortijo J (2012) PGC-1alpha induction in pulmonary arterial hypertension. Oxid Med Cell Longev 2012:236572

    PubMed Central  PubMed  Google Scholar 

  106. Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121(24):2661–2671

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176(3):1130–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Frank L, Groseclose EE (1984) Preparation for birth into an O2-rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res 18(3):240–244

    CAS  PubMed  Google Scholar 

  109. Asikainen TM, Raivio KO, Saksela M, Kinnula VL (1998) Expression and developmental profile of antioxidant enzymes in human lung and liver. Am J Respir Cell Mol Biol 19(6):942–949

    CAS  PubMed  Google Scholar 

  110. Autor AP, Frank L, Roberts RJ (1976) Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrome. Pediatr Res 10(3):154–158

    CAS  PubMed  Google Scholar 

  111. Huertas JR, Palomino N, Ochoa JJ, Quiles JL, Ramirez-Tortosa MC, Battino M, Robles R, Mataix J (1998) Lipid peroxidation and antioxidants in erythrocyte membranes of full-term and preterm newborns. Biofactors 8(1–2):133–137

    CAS  PubMed  Google Scholar 

  112. Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M, Izquierdo I, Asensi MA, Sastre J, Saenz P, Gimeno A (2009) Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal 11(12):2945–2955

    CAS  PubMed  Google Scholar 

  113. Frank L, Autor AP, Roberts RJ (1977) Oxygen therapy and hyaline membrane disease: the effect of hyperoxia on pulmonary superoxide dismutase activity and the mediating role of plasma or serum. J Pediatr 90(1):105–110

    CAS  PubMed  Google Scholar 

  114. Schroder A, Herting E, Speer CP (1999) [Superoxide dismutase and catalase activity in tracheobronchial secretions after surfactant treatment of newborn infants with respiratory distress syndrome]. Z Geburtshilfe Neonatol 203(5):201–206 (in German)

    CAS  PubMed  Google Scholar 

  115. Bonta VW, Gawron ER, Warshaw JB (1977) Neonatal red cell superoxide dismutase enzyme levels: possible role as a cellular defense mechanism against pulmonary oxygen toxicity. Pediatr Res 11(6):754–757

    CAS  PubMed  Google Scholar 

  116. Rosenfeld W, Evans H, Concepcion L, Jhaveri R, Schaeffer H, Friedman A (1984) Prevention of bronchopulmonary dysplasia by administration of bovine superoxide dismutase in preterm infants with respiratory distress syndrome. J Pediatr 105(5):781–785

    CAS  PubMed  Google Scholar 

  117. Garg U, Jain A, Singla P, Beri S, Garg R, Saili A (2012) Free radical status in retinopathy of prematurity. Indian J Clin Biochem 27(2):196–199

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Parad RB, Allred EN, Rosenfeld WN, Davis JM (2012) Reduction of retinopathy of prematurity in extremely low gestational age newborns treated with recombinant human Cu/Zn superoxide dismutase. Neonatology 102(2):139–144

    CAS  PubMed  Google Scholar 

  119. Singh SK, Tandon A, Kumari S, Ravi RN, Ray GN, Batra S (1998) Changes in anti-oxidant enzymes and lipid peroxidation in hyaline membrane disease. Indian J Pediatr 65(4):609–614

    CAS  PubMed  Google Scholar 

  120. Bazowska G, Jendryczko A (1996) [Antioxidant enzyme activities in fetal and neonatal lung: lowered activities of these enzymes in children with RDS]. Ginekol Pol 67(2):70–74 (in Polish)

    CAS  PubMed  Google Scholar 

  121. Walther FJ, Gidding CE, Kuipers IM, Willebrand D, Bevers EM, Abuchowski A, Viau AT (1986) Prevention of oxygen toxicity with superoxide dismutase and catalase in premature lambs. J Free Radic Biol Med 2(4):289–293

    CAS  PubMed  Google Scholar 

  122. Padmanabhan RV, Gudapaty R, Liener IE, Schwartz BA, Hoidal JR (1985) Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis 132(1):164–167

    CAS  PubMed  Google Scholar 

  123. Beretta L, Gerli GC, Ferraresi R, Agostoni A, Gualandri V, Orsini GB (1983) Antioxidant system in sickle red cells. Acta Haematol 70(3):194–197

    CAS  PubMed  Google Scholar 

  124. Agostoni A, Gerli GC, Beretta L, Bianchi M, Vignoli M, Bombelli F (1980) Superoxide dismutase, catalase and glutathione peroxidase activities in maternal and cord blood erythrocytes. J Clin Chem Clin Biochem 18(11):771–773

    CAS  PubMed  Google Scholar 

  125. Joppa P, Petrasova D, Stancak B, Dorkova Z, Tkacova R (2007) Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 119(13–14):428–434

    CAS  PubMed  Google Scholar 

  126. Aksenova TA, Parkhomenko IV, Gorbunov VV (2008) [Lipid peroxidation in hypertensive disease concurrent with chronic obstructive pulmonary disease]. Klin Lab Diagn 8:17–19

    PubMed  Google Scholar 

  127. Jin HF, Du SX, Zhao X, Wei HL, Wang YF, Liang YF, Tang CS, Du JB (2008) Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. Acta Pharmacol Sin 29(10):1157–1166

    CAS  PubMed  Google Scholar 

  128. Thibeault DW, Rezaiekhaligh M, Mabry S, Beringer T (1991) Prevention of chronic pulmonary oxygen toxicity in young rats with liposome-encapsulated catalase administered intratracheally. Pediatr Pulmonol 11(4):318–327

    CAS  PubMed  Google Scholar 

  129. Carpenter D, Larkin H, Chang A, Morris E, O'Neill J, Curtis J (2001) Superoxide dismutase and catalase do not affect the pulmonary hypertensive response to group B streptococcus in the lamb. Pediatr Res 49(2):181–188

    CAS  PubMed  Google Scholar 

  130. Fu RH, Chiu TH, Chiang MC, Lien R, Chou YH, Chiang CC, Cho YH, Yang PH (2008) Lower erythrocyte glutathione peroxidase activity in bronchopulmonary dysplasia in the first week of neonatal life. Neonatology 93(4):269–275

    CAS  PubMed  Google Scholar 

  131. Falciglia HS, Johnson JR, Sullivan J, Hall CF, Miller JD, Riechmann GC, Falciglia GA (2003) Role of antioxidant nutrients and lipid peroxidation in premature infants with respiratory distress syndrome and bronchopulmonary dysplasia. Am J Perinatol 20(2):97–107

    PubMed  Google Scholar 

  132. Fu RH, Chiu TH, Chiang MC, Cho YH, Lien R, Chiang CC, Yang PH (2007) Erythrocyte anti-oxyenzyme activity in preterm infants with retinopathy of prematurity. Neonatology 92(1):59–63

    CAS  PubMed  Google Scholar 

  133. Papp A, Nemeth I, Karg E, Papp E (1999) Glutathione status in retinopathy of prematurity. Free Radic Biol Med 27(7–8):738–743

    CAS  PubMed  Google Scholar 

  134. Morris CR, Suh JH, Hagar W, Larkin S, Bland DA, Steinberg MH, Vichinsky EP, Shigenaga M, Ames B, Kuypers FA, Klings ES (2008) Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111(1):402–410

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Detchaporn P, Kukongviriyapan U, Prawan A, Jetsrisuparb A, Greenwald SE, Kukongviriyapan V (2012) Altered vascular function, arterial stiffness, and antioxidant gene responses in pediatric thalassemia patients. Pediatr Cardiol 33(7):1054–1060

    PubMed  Google Scholar 

  136. Waseem F, Khemomal KA, Sajid R (2011) Antioxidant status in beta thalassemia major: a single-center study. Indian J Pathol Microbiol 54(4):761–763

    PubMed  Google Scholar 

  137. Irodova NL, Lankin VZ, Konovalova GK, Kochetov AG, Chazova IE (2002) Oxidative stress in patients with primary pulmonary hypertension. Bull Exp Biol Med 133(6):580–582

    CAS  PubMed  Google Scholar 

  138. Nur E, Brandjes DP, Teerlink T, Otten HM, Oude Elferink RP, Muskiet F, Evers LM, ten Cate H, Biemond BJ, Duits AJ, Schnog JJ (2012) N-acetylcysteine reduces oxidative stress in sickle cell patients. Ann Hematol 91(7):1097–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Pace BS, Shartava A, Pack-Mabien A, Mulekar M, Ardia A, Goodman SR (2003) Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol 73(1):26–32

    CAS  PubMed  Google Scholar 

  140. Soltan-Sharifi MS, Mojtahedzadeh M, Najafi A, Reza Khajavi M, Reza Rouini M, Moradi M, Mohammadirad A, Abdollahi M (2007) Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Hum Exp Toxicol 26(9):697–703

    CAS  PubMed  Google Scholar 

  141. Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T (1993) Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene 133(2):279–284

    CAS  PubMed  Google Scholar 

  142. Nishino T, Okamoto K, Eger BT, Pai EF (2008) Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289

    CAS  PubMed  Google Scholar 

  143. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T (1990) Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 265(24):14170–14175

    CAS  PubMed  Google Scholar 

  144. Enroth C, Eger BT, Okamoto K, Nishino T, Pai EF (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci U S A 97(20):10723–10728

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Nishino T, Okamoto K, Kawaguchi Y, Hori H, Matsumura T, Eger BT, Pai EF (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J Biol Chem 280(26):24888–24894

    CAS  PubMed  Google Scholar 

  146. Pearson AR, Godber BLJ, Eisenthal R, Taylor GL, Harrison R (2009) Human milk xanthine dehydrogenase is incompletely converted to the oxidase form in the absence of proteolysis. A structural explanation. Submitted (FEB-2009) to the PDB data bank

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research support from the National Institutes of Health (HL60190, HL67841, HL084739, R21HD057406, HL61284, P01HL0101902) and the Foundation Leducq. Christine Gross is supported, in part, by a pre-doctoral fellowship from the Southeast Affiliates of the American Heart Association (12PRE12060224). Dr. Black also thanks the efforts of all past and present laboratory members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Black Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gross, C.M., Aggarwal, S., Rafikov, R., Black, S.M. (2014). Oxidative Stress and Pulmonary Vascular Disorders. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_27

Download citation

Publish with us

Policies and ethics