Skip to main content

Hematologic Disorders

  • Chapter
  • First Online:
Studies on Pediatric Disorders

Abstract

Erythrocytes, the most abundant cells in the human body, are well known for the essential part they play in oxygen (O2) and carbon dioxide (CO2) transport. Less appreciated are their more subtle functions including context responsive vascular signaling (regulating vascular smooth muscle tone as a function of O2-sensitive processing of reactive nitrogen species (RNS) [1, 2], reactive oxygen species (ROS) [3], and metabolites of adenosine [4]), and of most relevance to this review—the detoxification of damaging oxidants [5, 6]. A number of factors allow erythrocytes to fulfill these essential functions: their ubiquitous distribution, high turnover (a desirable attribute for a detoxification unit [6]), highly evolved structure/composition, and perhaps most important their metabolic specialization, which is dedicated to maintaining reversible O2 binding capacity and redox homeostasis in blood [7]. Herein, we will review features of erythrocyte metabolism relevant to antioxidant systems as well as perturbations of these systems in congenital and acquired disease that affect erythrocyte function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,3-BPG:

2,3-Bisphosphoglycerate

ATP:

Adenosine triphosphate

Cat:

Catalase

cdB3:

Cytoplasmic domain of Band 3

CO2 :

Carbon dioxide

DHA:

Dehydroascorbic acid

EMP:

Embden Meyerhof pathway

G6P:

Glucose-6-phosphate

G6PD:

Glucose-6-phosphate dehydrogenase

GAPDH:

Glyceraldehyde phosphate dehydrogenase

GLUT-1:

Glucose transporter 1

GR:

Glutathione reductase

GSH:

l-y-Glutamyl-l-cysteinylglycine

GSHPx:

Glutathione peroxidase

GSSG:

Glutathione disulfide

H2O2 :

Hydrogen peroxide

Hb:

Hemoglobin

HbS:

Hemoglobin S

HMP:

Hexose monophosphate pathway

HO :

Hydroxyl radical

LDH:

Lactate dehydrogenase

metHb:

Methemoglobin

metHbR:

Methemoglobin reductase

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO :

Nitric oxide

O2 :

Oxygen

O2 :

Superoxide

PK:

Pyruvate kinase

PMOR:

Plasma membrane oxidoreductases

Prx:

Periredoxin

RBC:

Red blood cell

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCD:

Sickle cell disease

SOD:

Superoxide dismutase

TrxR:

Thioredoxin reductase

References

  1. Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67:99–145

    CAS  PubMed  Google Scholar 

  2. Doctor A, Stamler JS (2011) Nitric oxide transport in blood: a third gas in the respiratory cycle. Compr Physiol 1:541–568

    PubMed  Google Scholar 

  3. Buehler PW, Alayash AI (2004) Oxygen sensing in the circulation: “cross talk” between red blood cells and the vasculature. Antioxid Redox Signal 6:1000–1010

    CAS  PubMed  Google Scholar 

  4. Ellsworth ML et al (2009) Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda) 24:107–116

    CAS  Google Scholar 

  5. Buehler PW, Alayash AI (2005) Redox biology of blood revisited: the role of red blood cells in maintaining circulatory reductive capacity. Antioxid Redox Signal 7:1755–1760

    CAS  PubMed  Google Scholar 

  6. Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL (1998) The role of erythrocytes in the inactivation of free radicals. Med Hypotheses 50:363–367

    CAS  PubMed  Google Scholar 

  7. Siems WG, Sommerburg O, Grune T (2000) Erythrocyte free radical and energy metabolism. Clin Nephrol 53:S9–S17

    CAS  PubMed  Google Scholar 

  8. Volpe EP (1993) Blood and circulation. McGraw-Hill College, Columbus

    Google Scholar 

  9. Hattangadi SM, Lodish HF (2007) Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest 117:2075–2077

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Seda Artis SAS (2012) Carnosine and its role on the erythrocyte rheology. In: Seda Artis A (ed) Hemodynamics—new diagnostic and therapeutic approaches. InTech Europe, Croatia

    Google Scholar 

  11. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    CAS  PubMed  Google Scholar 

  12. Smith C, Marks AD, Lieberman M (2005) Mark’s basic medical biochemistry. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  13. Campanella ME, Chu H, Low PS (2005) Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 102:2402–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Rogers SC et al (2009) Hypoxia limits antioxidant capacity in red blood cells by altering glycolytic pathway dominance. FASEB J 9:3159–3170

    Google Scholar 

  15. Cimen MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11

    CAS  PubMed  Google Scholar 

  16. Chakrabarti A et al (2011) Differential expression of red cell proteins in hemoglobinopathy. Proteomics Clin Appl 5:98–108

    CAS  PubMed  Google Scholar 

  17. Rifkind JM, Nagababu E (2013) Hemoglobin redox reactions and red blood cell aging. Antioxid Redox Signal 18:2274–2283

    CAS  PubMed  Google Scholar 

  18. Bhattacharya D, Mukhopadhyay D, Chakrabarti A (2007) Hemoglobin depletion from red blood cell cytosol reveals new proteins in 2-D gel-based proteomics study. Proteomics Clin Appl 1:561–564

    CAS  PubMed  Google Scholar 

  19. Rapoport SM, Dubiel W, Maretzki D, Siems W (1985) In: Proceedings of the 16th FEBS meeting, Part A. VNU Science Press, Utrecht, pp 165–176

    Google Scholar 

  20. Baldwin SA, Lienhard GE (1989) Purification and reconstitution of glucose transporter from human erythrocytes. Methods Enzymol 174:39–50

    CAS  PubMed  Google Scholar 

  21. Prchal JT et al (1990) Congenital methemoglobinemia due to methemoglobin reductase deficiency in two unrelated American black families. Am J Med 89:516–522

    CAS  PubMed  Google Scholar 

  22. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Telen MJ, Kaufman RE (1999) The mature erythrocyte. In: Greer JP, Foerster J (eds) Clinical hematology. Lippincott Williams & Wilkins, Philadelphia, pp 217–247

    Google Scholar 

  24. van Wijk R, van Solinge WW (2005) The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood 106:4034–4042

    PubMed  Google Scholar 

  25. Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS (1991) Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem 266:4106–4111

    CAS  PubMed  Google Scholar 

  26. Low PS, Rathinavelu P, Harrison ML (1993) Regulation of glycolysis via reversible enzyme binding to the membrane protein, band 3. J Biol Chem 268:14627–14631

    CAS  PubMed  Google Scholar 

  27. Messana I et al (1996) Human erythrocyte metabolism is modulated by the O2-linked transition of hemoglobin. FEBS Lett 390:25–28

    CAS  PubMed  Google Scholar 

  28. Castagnola M, Messana I, Sanna MT, Giardina B (2010) Oxygen-linked modulation of erythrocyte metabolism: state of the art. Blood Transfus 8(suppl 3):s53–s58

    PubMed Central  PubMed  Google Scholar 

  29. De Rosa MC, Alinovi CC, Galtieri A, Russo A, Giardina B (2008) Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: new insights in gas transport and metabolic modulation. IUBMB Life 60:87–93

    PubMed  Google Scholar 

  30. Tsai IH, Murthy SN, Steck TL (1982) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442

    CAS  PubMed  Google Scholar 

  31. Solti M, Friedrich P (1976) Partial reversible inactivation of enzymes due to binding to the human erythrocyte membrane. Mol Cell Biochem 10:145–152

    CAS  PubMed  Google Scholar 

  32. Walder JA et al (1984) The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J Biol Chem 259:10238–10246

    CAS  PubMed  Google Scholar 

  33. Lewis IA, Campanella ME, Markley JL, Low PS (2009) Role of band 3 in regulating metabolic flux of red blood cells. Proc Natl Acad Sci U S A 106:18515–18520

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Albrecht V, Roigas H, Schultze M, Jacobasch G, Rapoport S (1971) The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man. Eur J Biochem 20:44–50

    CAS  PubMed  Google Scholar 

  35. Gaetani GD, Parker JC, Kirkman HN (1974) Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A 71:3584–3587

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Thorburn DR, Kuchel PW (1985) Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation. Eur J Biochem 150:371–386

    CAS  PubMed  Google Scholar 

  37. Galiano S, Mareni C, Gaetani GF (1978) Effect of haemolysis on the hexose monophosphate pathway in normal and in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta 501:1–9

    CAS  PubMed  Google Scholar 

  38. Morelli A et al (1979) In vitro correction of erythrocyte glucose 6-phosphate dehydrogenase (G6PD) deficiency. Arch Biochem Biophys 197:543–550

    CAS  PubMed  Google Scholar 

  39. Roigas H, Zoellner E, Jacobasch G, Schultze M, Rapoport S (1970) Regulatory factors in methylene blue catalysis in erythrocytes. Eur J Biochem 12:24–30 (in German)

    CAS  PubMed  Google Scholar 

  40. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    CAS  PubMed  Google Scholar 

  41. Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330–334

    CAS  PubMed  Google Scholar 

  42. Low FM, Hampton MB, Winterbourn CC (2008) Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid Redox Signal 10:1621–1630

    CAS  PubMed  Google Scholar 

  43. Winterbourn CC (1990) Oxidative denaturation in congenital hemolytic anemias: the unstable hemoglobins. Semin Hematol 27:41–50

    CAS  PubMed  Google Scholar 

  44. Rifkind JM, Ramasamy S, Manoharan PT, Nagababu E, Mohanty JG (2004) Redox reactions of hemoglobin. Antioxid Redox Signal 6:657–666

    CAS  PubMed  Google Scholar 

  45. Winterbourn CC, Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80:1486–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  46. van Asbeck BS et al (1985) Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science 227:756–759

    PubMed  Google Scholar 

  47. Fujino T, Tada T, Hosaka T, Beppu M, Kikugawa K (2000) Presence of oxidized protein hydrolase in human cell lines, rat tissues, and human/rat plasma. J Biochem 127:307–313

    CAS  PubMed  Google Scholar 

  48. Fujino T, Tada T, Beppu M, Kikugawa K (1998) Purification and characterization of a serine protease in erythrocyte cytosol that is adherent to oxidized membranes and preferentially degrades proteins modified by oxidation and glycation. J Biochem 124:1077–1085

    CAS  PubMed  Google Scholar 

  49. Elahian F, Sepehrizadeh Z, Moghimi B, Mirzaei SA (2012) Human cytochrome b5 reductase: structure, function, and potential applications. Crit Rev Biotechnol; Early online 1–11

    Google Scholar 

  50. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    CAS  PubMed  Google Scholar 

  51. Lunn G, Dale GL, Beutler E (1979) Transport accounts for glutathione turnover in human erythrocytes. Blood 54:238–244

    CAS  PubMed  Google Scholar 

  52. Srivastava SK, Beutler E (1969) The transport of oxidized glutathione from human erythrocytes. J Biol Chem 244:9–16

    CAS  PubMed  Google Scholar 

  53. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    CAS  PubMed  Google Scholar 

  54. Miyazawa T, Nakagawa K, Miyazawa T (2012) Liquid chromatography-based assay for carotenoids in human blood. In: Preedy VR (ed) Vitamin A and carotenoids: chemistry, analysis, function and effects. RSC Publishing, Cambridge

    Google Scholar 

  55. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    CAS  PubMed  Google Scholar 

  56. Constantinescu A, Han D, Packer L (1993) Vitamin E recycling in human erythrocyte membranes. J Biol Chem 268:10906–10913

    CAS  PubMed  Google Scholar 

  57. Mendiratta S, Qu ZC, May JM (1998) Erythrocyte ascorbate recycling: antioxidant effects in blood. Free Radic Biol Med 24:789–797

    CAS  PubMed  Google Scholar 

  58. Hughes RE, Maton SC (1968) The passage of vitamin C across the erythrocyte membrane. Br J Haematol 14:247–253

    CAS  PubMed  Google Scholar 

  59. Bianchi J, Rose RC (1986) Glucose-independent transport of dehydroascorbic acid in human erythrocytes. Proc Soc Exp Biol Med 181:333–337

    CAS  PubMed  Google Scholar 

  60. Wagner ES, White W, Jennings M, Bennett K (1987) The entrapment of [14C]ascorbic acid in human erythrocytes. Biochim Biophys Acta 902:133–136

    CAS  PubMed  Google Scholar 

  61. Ebadi M (1993) Multiple pineal receptors in regulating melatonin synthesis. In: Yu HS, Reiter RJ (eds) Melatonin: biosynthesis, physiological effects, and clinical applications. CRC Press, Boca Raton

    Google Scholar 

  62. Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21:307–315

    CAS  PubMed  Google Scholar 

  63. Tan DX et al (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 29:1177–1185

    CAS  PubMed  Google Scholar 

  64. Poeggeler B et al (1994) Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci 738:419–420

    CAS  PubMed  Google Scholar 

  65. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    CAS  PubMed  Google Scholar 

  66. Reiter RJ et al (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146

    CAS  PubMed  Google Scholar 

  67. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74

    CAS  PubMed  Google Scholar 

  68. Ho HY, Cheng ML, Chiu DT (2007) Glucose-6-phosphate dehydrogenase—from oxidative stress to cellular functions and degenerative diseases. Redox Rep 12:109–118

    CAS  PubMed  Google Scholar 

  69. Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC (2013) Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol 304:H491–H500

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Watchko JF, Lin Z (2010) Exploring the genetic architecture of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 15:169–175

    PubMed  Google Scholar 

  71. Mason PJ, Bautista JM, Gilsanz F (2007) G6PD deficiency: the genotype-phenotype association. Blood Rev 21:267–283

    CAS  PubMed  Google Scholar 

  72. Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G (2007) Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 21:217–231

    CAS  PubMed  Google Scholar 

  73. Zanella A, Fermo E, Bianchi P, Valentini G (2005) Red cell pyruvate kinase deficiency: molecular and clinical aspects. Br J Haematol 130:11–25

    CAS  PubMed  Google Scholar 

  74. Zanella A, Bianchi P (2000) Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol 13:57–81

    CAS  PubMed  Google Scholar 

  75. Chirico EN, Pialoux V (2012) Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life 64:72–80

    CAS  PubMed  Google Scholar 

  76. Hebbel RP, Morgan WT, Eaton JW, Hedlund BE (1988) Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A 85:237–241

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Platt OS, Falcone JF (1995) Membrane protein interactions in sickle red blood cells: evidence of abnormal protein 3 function. Blood 86:1992–1998

    CAS  PubMed  Google Scholar 

  78. Shaklai N, Sharma VS (1980) Kinetic study of the interaction of oxy- and deoxyhemoglobins with the erythrocyte membrane. Proc Natl Acad Sci U S A 77:7147–7151

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Rogers SC et al (2013) Sickle hemoglobin disturbs normal coupling among erythrocyte O2 content, glycolysis, and antioxidant capacity. Blood 121:1651–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nur E et al (2011) Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol 86:484–489

    CAS  PubMed  Google Scholar 

  81. Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47

    PubMed Central  PubMed  Google Scholar 

  82. Natta CL, Machlin LJ, Brin M (1980) A decrease in irreversibly sickled erythrocytes in sickle cell anemia patients given vitamin E. Am J Clin Nutr 33:968–971

    CAS  PubMed  Google Scholar 

  83. Amer J et al (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132:108–113

    CAS  PubMed  Google Scholar 

  84. Pfeifer WP et al (2008) Vitamin E supplementation reduces oxidative stress in beta thalassaemia intermedia. Acta Haematol 120:225–231

    CAS  PubMed  Google Scholar 

  85. Scott MD et al (1993) Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J Clin Invest 91:1706–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Dhawan V, Kumar KR, Marwaha RK, Ganguly NK (2005) Antioxidant status in children with homozygous thalassemia. Indian Pediatr 42:1141–1145

    PubMed  Google Scholar 

  87. Huet O et al (2007) Plasma-induced endothelial oxidative stress is related to the severity of septic shock. Crit Care Med 35:821–826

    CAS  PubMed  Google Scholar 

  88. Wheeler DS (2011) Oxidative stress in critically ill children with sepsis. Open Inflamm J 4:74–81

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Dyson A et al (2011) An integrated approach to assessing nitroso-redox balance in systemic inflammation. Free Radic Biol Med 51:1137–1145

    CAS  PubMed  Google Scholar 

  90. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  91. Petropoulos IK, Margetis PI, Antonelou MH, Koliopoulos JX, Gartaganis SP, Margaritis LH, Papassideri IS (2007) Structural alterations of the erythrocyte membrane proteins in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 245:1179–1188

    PubMed  Google Scholar 

  92. Gaczynska M, Judkiewicz L, Szosland K (1993) Abnormal degradation of red cell membrane proteins in diabetes. Cytobios 75:7–11

    CAS  PubMed  Google Scholar 

  93. Carroll J et al (2006) An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Mol Biosyst 2:305–311

    CAS  PubMed  Google Scholar 

  94. Bono A, Caimi G, Catania A, Sarno A, Pandolfo L (1987) Red cell peroxide metabolism in diabetes mellitus. Horm Metab Res 19:264–266

    CAS  PubMed  Google Scholar 

  95. Dincer Y, Akcay T, Alademir Z, Ilkova H (2002) Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin-dependent diabetes mellitus. Metabolism 51:1360–1362

    CAS  PubMed  Google Scholar 

  96. Thornalley PJ, McLellan AC, Lo TW, Benn J, Sonksen PH (1996) Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci 91:575–582

    CAS  PubMed  Google Scholar 

  97. Jiang M et al (2003) Protein disregulation in red blood cell membranes of type 2 diabetic patients. Biochem Biophys Res Commun 309:196–200

    CAS  PubMed  Google Scholar 

  98. Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543

    CAS  PubMed  Google Scholar 

  99. Xu Y, Osborne BW, Stanton RC (2005) Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol 289:F1040–F1047

    CAS  PubMed  Google Scholar 

  100. Blakytny R, Harding JJ (1992) Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem J 288(Pt 1):303–307

    CAS  PubMed Central  PubMed  Google Scholar 

  101. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial (1995). Diabetes 44:968–983

    Google Scholar 

  102. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial (1995). Am J Cardiol 75:894–903

    Google Scholar 

  103. Ceriello A et al (1991) Vitamin E reduction of protein glycosylation in diabetes. New prospect for prevention of diabetic complications? Diabetes Care 14:68–72

    CAS  PubMed  Google Scholar 

  104. Varvarovska J et al (2004) Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed Pharmacother 58:539–545

    CAS  PubMed  Google Scholar 

  105. Lee L, Sanders RA (2012) Metabolic syndrome. Pediatr Rev 33:459–466; quiz 467–458

    Google Scholar 

  106. Hutcheson R, Rocic P (2012) The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Exp Diabetes Res 2012:271028

    PubMed Central  PubMed  Google Scholar 

  107. Goodwill AG, Frisbee JC (2012) Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vasc Pharmacol 57:150–159

    CAS  Google Scholar 

  108. Ziobro A, Duchnowicz P, Mulik A, Koter-Michalak M, Broncel M (2013) Oxidative damages in erythrocytes of patients with metabolic syndrome. Mol Cell Biochem 378:267–273

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Himmelfarb J, Hakim RM (2003) Oxidative stress in uremia. Current Opin Nephrol Hypertens 12:593–598

    CAS  Google Scholar 

  110. Rutkowski P et al (2006) Interrelationship between uremic toxicity and oxidative stress. J Ren Nutr 16:190–193

    PubMed  Google Scholar 

  111. Suzuki D, Miyata T, Kurokawa K (2001) Carbonyl stress. Contrib Nephrol 134:36–45

    CAS  PubMed  Google Scholar 

  112. Floccari F et al (2005) Oxidative stress and uremia. Med Res Rev 25:473–486

    CAS  PubMed  Google Scholar 

  113. Yilmaz MI et al (2009) Hemoglobin is inversely related to flow-mediated dilatation in chronic kidney disease. Kidney Int 75:1316–1321

    CAS  PubMed  Google Scholar 

  114. Doctor A, Spinella P (2012) Effect of processing and storage on red blood cell function in vivo. Semin Perinatol 36:248–259

    PubMed Central  PubMed  Google Scholar 

  115. Spinella PC, Doctor A, Blumberg N, Holcomb JB (2011) Does the storage duration of blood products affect outcomes in critically ill patients? Transfusion 51:1644–1650

    PubMed  Google Scholar 

  116. Kanias T, Acker JP (2010) Biopreservation of red blood cells—the struggle with hemoglobin oxidation. FEBS J 277:343–356

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Doctor M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rogers, S., Silva, M., Doctor, A. (2014). Hematologic Disorders. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_21

Download citation

Publish with us

Policies and ethics