Skip to main content

Environmental Pollution and Health Consequences

  • Chapter
  • First Online:
Studies on Pediatric Disorders

Abstract

Air pollutants consist of diverse groups of chemical compounds including volatile organic compounds, polycyclic aromatic hydrocarbons, heavy metals, and particulate matter. Many of these compounds induce oxidative damage to macromolecules either directly or after their metabolic conversion into reactive compounds. While oxidative damage to DNA, lipids, and proteins is associated with many negative health effects in adults, its consequences are particularly serious during pregnancy and in children that are especially vulnerable to the effects of air pollution because of not fully developed immune and respiratory systems. Exposure to environmental pollutants during pregnancy is associated with higher incidence of adverse pregnancy outcomes, including low birth weight (LBW) and intrauterine growth restriction (IUGR). LBW and IUGR newborns often suffer from various negative health consequences, e.g., increased morbidity and mortality or cognitive impairment, as well as higher risks of cardiovascular diseases, type 2 diabetes mellitus, or renal insufficiency in older age. In young children higher incidence of bronchial asthma has been reported in areas with high levels of air pollutants. Bronchial asthma is the most common inflammatory disease of the respiratory system which impacts the immune response of the organism. It has been shown that oxidative stress plays a critical role in the pathogenesis of the disease. Apart from bronchial asthma, other diseases, e.g., wheezing and allergic rhinitis, are associated with exposure to air pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-oxodG:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

15-F2t-IsoP:

15-F2t-isoprostane

B[a]P:

Benzo[a]pyrene

BMI:

Body mass index

c-PAHs:

Carcinogenic PAHs

DEPs:

Diesel exhaust particles

ETS:

Environmental tobacco smoke

IUGR:

Intrauterine growth retardation

LBW:

Low birth weight

MDA:

Malondialdehyde

OR:

Odds ratio

PAHs:

Polycyclic aromatic hydrocarbons

PM:

Particulate matter

PM1:

PM of aerodynamic diameter <1 μm

PM2.5:

PM of aerodynamic diameter <2.5 μm

PM10:

PM of aerodynamic diameter <10 μm

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

VOC:

Volatile organic compound

References

  1. Yang W, Omaye ST (2009) Air pollutants, oxidative stress and human health. Mutat Res 674:45–54

    Article  CAS  PubMed  Google Scholar 

  2. Barbato DL, Tomei G, Tomei F, Sancini A (2010) Traffic air pollution and oxidatively generated DNA damage: can urinary 8-oxo-7,8-dihydro-2-deoxyguanosine be considered a good biomarker? A meta-analysis. Biomarkers 15:538–545

    Article  CAS  PubMed  Google Scholar 

  3. Moller P, Loft S (2010) Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect 118:1126–1136

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bagryantseva Y, Novotna B, Rossner P Jr, Chvatalova I, Milcova A, Svecova V, Lnenickova Z, Solansky I, Sram RJ (2010) Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. Toxicol Lett 199:60–68

    Article  CAS  PubMed  Google Scholar 

  5. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  PubMed  Google Scholar 

  6. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133

    Article  CAS  PubMed  Google Scholar 

  7. Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA (2010) Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26:481–498

    Article  CAS  PubMed  Google Scholar 

  8. Nair J, De Flora S, Izzotti A, Bartsch H (2007) Lipid peroxidation-derived etheno-DNA adducts in human atherosclerotic lesions. Mutat Res 621:95–105

    Article  CAS  PubMed  Google Scholar 

  9. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  10. Sorensen M, Autrup H, Moller P, Hertel O, Jensen SS, Vinzents P, Knudsen LE, Loft S (2003) Linking exposure to environmental pollutants with biological effects. Mutat Res 544:255–271

    Article  CAS  PubMed  Google Scholar 

  11. Montuschi P, Barnes P, Roberts LJ 2nd (2007) Insights into oxidative stress: the isoprostanes. Curr Med Chem 14:703–717

    Article  CAS  PubMed  Google Scholar 

  12. Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 61:522–527

    Article  CAS  PubMed  Google Scholar 

  13. Sram RJ, Binkova B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113:375–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dejmek J, Selevan SG, Benes I, Solansky I, Sram RJ (1999) Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspect 107:475–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dejmek J, Solansky I, Benes I, Lenicek J, Sram RJ (2000) The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108:1159–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bobak M (2000) Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect 108:173–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (2008) A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 116:680–686

    Article  PubMed Central  PubMed  Google Scholar 

  18. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RC, Wiswedel I, Zarkovic K, Zarkovic N (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44:1125–1171

    Article  CAS  PubMed  Google Scholar 

  19. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  CAS  PubMed  Google Scholar 

  20. Smith SC, Guilbert LJ, Yui J, Baker PN, Davidge ST (1999) The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis. Placenta 20:309–315

    Article  CAS  PubMed  Google Scholar 

  21. Kannan S, Misra DP, Dvonch JT, Krishnakumar A (2006) Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect 114:1636–1642

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ruder EH, Hartman TJ, Blumberg J, Goldman MB (2008) Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update 14:345–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS et al (2008) Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Scifres CM, Nelson DM (2009) Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol 587:3453–3458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li M, Huang SJ (2009) Innate immunity, coagulation and placenta-related adverse pregnancy outcomes. Thromb Res 124:656–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I (2007) Role of oxidative stress in intrauterine growth restriction. Gynecol Obstet Invest 64:187–192

    Article  CAS  PubMed  Google Scholar 

  27. Peter Stein T, Scholl TO, Schluter MD, Leskiw MJ, Chen X, Spur BW et al (2008) Oxidative stress early in pregnancy and pregnancy outcome. Free Radic Res 42:841–848

    Article  CAS  PubMed  Google Scholar 

  28. Potdar N, Singh R, Mistry V, Evans MD, Farmer PB, Konje JC et al (2009) First-trimester increase in oxidative stress and risk of small-for-gestational-age fetus. BJOG 116:637–642

    Article  CAS  PubMed  Google Scholar 

  29. Scholl TO, Stein TP (2001) Oxidant damage to DNA and pregnancy outcome. J Matern Fetal Med 10:182–185

    Article  CAS  PubMed  Google Scholar 

  30. Orhan H, Onderoglu L, Yucel A, Sahin G (2003) Circulating biomarkers of oxidative stress in complicated pregnancies. Arch Gynecol Obstet 267:189–195

    CAS  PubMed  Google Scholar 

  31. Rossner P Jr, Tabashidze N, Dostal M, Novakova Z, Chvatalova I, Spatova M, Sram RJ (2011) Genetic, biochemical and environmental factors associated with pregnancy outcome in newborns from the Czech Republic. Environ Health Perspect 19:265–271

    Google Scholar 

  32. Negi R, Pande D, Kumar A, Khanna RS, Khanna HD (2012) Evaluation of biomarkers of oxidative stress and antioxidant capacity in the cord blood of preterm low birth weight neonates. J Matern Fetal Neonatal Med 25:1338–1341

    Article  CAS  PubMed  Google Scholar 

  33. Al-Saleh I, Alsabbahen A, Shinwari N, Billedo G, Mashhour A, Al-Sarraj Y, Mohamed Gel D, Rabbah A (2013) Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Sci Total Environ 444:565–578

    Article  CAS  PubMed  Google Scholar 

  34. Jedrychowski WA, Perera FP, Maugeri U, Mroz E, Klimaszewska-Rembiasz M, Flak E, Edwards S, Spengler JD (2010) Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr Perinat Epidemiol 24:492–501

    Article  PubMed Central  PubMed  Google Scholar 

  35. Holgate ST (2008) Pathogenesis of asthma. Clin Exp Allergy 38:872–897

    Article  CAS  PubMed  Google Scholar 

  36. Byoung-Ju K, Soo-Jong H (2012) Ambient air pollution and allergic diseases in children. Korean J Pediatr 55:185–192

    Article  Google Scholar 

  37. World Health Organisation (WHO) (2005) Effect of air pollution on children’s health and development. World Health Organisation, Geneva

    Google Scholar 

  38. Calderon-Garciduenas L, Wang L, Zhang YJ, Rodriguez-Alcaraz A, Osnaya A, Villarreal-Calderon A, Santella RM (1999) 8-Hydroxy-2’-deoxyguanosine, a major mutagenic oxidative DNA lesion and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ Health Perspect 107:469–474

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gehring U, Wijga AH, Brauer M, Fischer P, de Joungste JC, Kerkhof M et al (2010) Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med 181:596–603

    Article  PubMed  Google Scholar 

  40. Caballero Balanza S, Martorell Aragones A, Cerda Mir JC, Remirez JB, Navarro Ivanez R, Navarro Soriano A, Felix Toledo R, Escribano Montaner A (2010) Leukotriene B4 and 8-isoprostane in exhaled breath condensate of children with episodic and persistent asthma. J Investig Allergol Clin Immunol 20:237–243

    CAS  PubMed  Google Scholar 

  41. Hasan RA, Thomas J, Davidson B, Barnes J, Reddy R (2010) 8-Isoprostane in the exhaled breath condensate of children hospitalized for status asthmaticus. Pediatr Crit Care Med 12(1):e25–e28

    Article  Google Scholar 

  42. Dut R, Dizdar EA, Birben E, Sackesen C, Soyer OU, Besler T, Kalayci O (2008) Oxidative stress and its determinants in the airways of children with asthma. Allergy 63:1605–1609

    Article  CAS  PubMed  Google Scholar 

  43. Nagai K, Betsuyaku T, Konno S, Ito Y, Nasuhara Y, Hizawa N, Kondo T, Nishimura M (2008) Diversity of protein carbonylation in allergic airway inflammation. Free Radic Res 42:921–929

    Article  CAS  PubMed  Google Scholar 

  44. Louhelainen N, Rytila P, Obase Y, Makela M, Haahtela T, Kinnula VL, Pelkonen A (2008) The value of sputum 8-isoprostane in detecting oxidative stress in mild asthma. J Asthma 45:149–154

    Article  CAS  PubMed  Google Scholar 

  45. Buthbumrung N, Mahidol C, Navasumrit P, Promvijit J, Hunsonti P, Autrup H, Ruchirawat M (2008) Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. Chem Biol Interact 172:185–194

    Article  CAS  PubMed  Google Scholar 

  46. Svecova V, Rossner P Jr, Dostal M, Topinka J, Solansky I, Sram RJ (2009) Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutat Res 662:37–43

    Article  CAS  PubMed  Google Scholar 

  47. Hertz-Picciotto I, Baker RJ, Yap PS, Dostal M, Joad JP, Lipsett M, Greenfield T, Herr CE, Benes I, Shumway RH, Pinkerton KE, Sram RJ (2007) Early childhood lower respiratory illness and air pollution. Environ Health Perspect 115:1510–1518

    CAS  PubMed Central  PubMed  Google Scholar 

  48. DiFranza JR, Lew RA (1995) Effect of maternal cigarette smoking on pregnancy complications and sudden infant death syndrome. J Fam Pract 40:385–394

    CAS  PubMed  Google Scholar 

  49. DiFranza JR, Lew RA (1996) Morbidity and mortality in children associated with the use of tobacco products by other people. Pediatrics 97:560–568

    CAS  PubMed  Google Scholar 

  50. Fox NL, Sexton M, Hebel JR (1990) Prenatal exposure to tobacco: I. Effects on physical growth at age three. Int J Epidemiol 19:66–71

    Article  CAS  PubMed  Google Scholar 

  51. Strachan DP, Cook DG (1997) Health effects of passive smoking. 1. Parental smoking and lower respiratory illness in infancy and early childhood. Thorax 52:905–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nilsson R, Nordlinder R, Moen BE, Ovrebo S, Bleie K, Skorve AH, Hollund BE, Tagesson C (2004) Increased urinary excretion of 8-hydroxydeoxyguanosine in engine room personnel exposed to polycyclic aromatic hydrocarbons. Occup Environ Med 61:692–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hu CW, Wu MT, Chao MR, Pan CH, Wang CJ, Swenberg JA, Wu KY (2004) Comparison of analyses of urinary 8-hydroxy-2’-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Commun Mass Spectrom 18:505–510

    Article  CAS  PubMed  Google Scholar 

  54. Chuang CY, Lee CC, Chang YK, Sung FC (2003) Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine: influence of taxi driving, smoking and areca chewing. Chemosphere 52:1163–1171

    Article  CAS  PubMed  Google Scholar 

  55. Marczynski B, Rihs H, Rossbach B, Holzer J, Angerer J, Scherenberg M, Hoffmann G, Bruning T, Wilhelm M (2002) Analysis of 8-oxo-7,8-dihydro-2’-deoxyguanosine and DNA strand breaks in white blood cells of occupationally exposed workers: comparison with ambient monitoring, urinary metabolites and enzyme polymorphisms. Carcinogenesis 23:273–281

    Article  CAS  PubMed  Google Scholar 

  56. Marczynski B, Preuss R, Mensing T, Angerer J, Seidel A, El MA, Wilhelm M, Bruning T (2005) Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material: comparison with PAH air and urinary metabolite levels. Int Arch Occup Environ Health 78:97–108

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, Ichiba M, Hanaoka T, Pan G, Yamano Y, Hara K, Takahashi K, Tomokuni K (2003) Leukocyte 8-hydroxydeoxyguanosine and aromatic DNA adduct in coke-oven workers with polycyclic aromatic hydrocarbon exposure. Int Arch Occup Environ Health 76:499–504

    Article  CAS  PubMed  Google Scholar 

  58. Casado A, De LN, Lopez-Fernandez E, Sanchez A, Jimenez JA (2006) Lipid peroxidation, occupational stress and aging in workers of a prehospital emergency service. Eur J Emerg Med 13:165–171

    Article  PubMed  Google Scholar 

  59. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ (2008) Seasonal variability of oxidative stress markers in city bus drivers—part I: oxidative damage to DNA. Mutat Res 642:14–20

    Article  CAS  PubMed  Google Scholar 

  60. Lagorio S, Tagesson C, Forastiere F, Iavarone I, Axelson O, Carere A (1994) Exposure to benzene and urinary concentrations of 8-hydroxydeoxyguanosine, a biological marker of oxidative damage to DNA. Occup Environ Med 51:739–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Nilsson RI, Nordlinder RG, Tagesson C, Walles S, Jarvholm BG (1996) Genotoxic effects in workers exposed to low levels of benzene from gasoline. Am J Ind Med 30:317–324

    Article  CAS  PubMed  Google Scholar 

  62. Risom L, Moller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592:119–137

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Zhang Q, Feng J, Deng L, Zeng N, Yang A, Zhang W (1996) The study of DNA oxidative damage in benzene-exposed workers. Mutat Res 370:145–150

    CAS  PubMed  Google Scholar 

  64. Sorensen M, Autrup H, Hertel O, Wallin H, Knudsen LE, Loft S (2003) Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 12:191–196

    CAS  PubMed  Google Scholar 

  65. Sorensen M, Loft S, Andersen HV, Raaschou-Nielsen O, Skovgaard LT, Knudsen LE, Nielsen IV, Hertel O (2005) Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Anal Environ Epidemiol 15:413–422

    Article  PubMed  Google Scholar 

  66. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM, Sram RJ (2007) Oxidative and nitrosative stress markers in bus drivers. Mutat Res 617:23–32

    Article  CAS  PubMed  Google Scholar 

  67. Gutierrez-Castillo ME, Roubicek DA, Cebrian-Garcia ME, De Vizcaya-Ruiz A, Sordo-Cedeno M, Ostrosky-Wegman P (2006) Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen 47:199–211

    Article  CAS  PubMed  Google Scholar 

  68. Pilger A, Rudiger HW (2006) 8-Hydroxy-2’-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80:1–15

    Article  CAS  PubMed  Google Scholar 

  69. Montuschi P, Barnes PJ, Roberts LJ (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800

    Article  CAS  PubMed  Google Scholar 

  70. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  PubMed  Google Scholar 

  71. Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–326

    Article  CAS  PubMed  Google Scholar 

  72. Singh VK, Patel DK, Singh J, Ram S, Mathur N, Siddiqui MK (2008) Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices: an Indian perspective. Clin Biochem 41:152–161

    Article  CAS  PubMed  Google Scholar 

  73. Lykkesfeldt J (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380:50–58

    Article  CAS  PubMed  Google Scholar 

  74. Toraason M, Hayden C, Marlow D, Rinehart R, Mathias P, Werren D, Olsen LD, Neumeister CE, Mathews ES, Cheever KL, Marlow KL, DeBord DG, Reid TM (2001) DNA strand breaks, oxidative damage, and 1-OH pyrene in roofers with coal-tar pitch dust and/or asphalt fume exposure. Int Arch Occup Environ Health 74:396–404

    Article  CAS  PubMed  Google Scholar 

  75. Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ (2008) Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat Res 642:21–27

    Article  CAS  PubMed  Google Scholar 

  76. Pereira CE, Heck TG, Saldiva PH, Rhoden CR (2007) Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung. Braz J Med Biol Res 40:1353–1359

    Article  CAS  PubMed  Google Scholar 

  77. Barregard L, Sallsten G, Gustafson P, Andersson L, Johansson L, Basu S, Stigendal L (2006) Experimental exposure to wood-smoke particles in healthy humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhal Toxicol 18:845–853

    Article  CAS  PubMed  Google Scholar 

  78. Sorensen M, Daneshvar B, Hansen M, Dragsted LO, Hertel O, Knudsen L, Loft S (2003) Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect 111:161–166

    Article  PubMed Central  PubMed  Google Scholar 

  79. Rhoden CR, Lawrence J, Godleski JJ, Gonzales-Flecha B (2004) N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci 79:296–303

    Article  CAS  PubMed  Google Scholar 

  80. Ceylan E, Kocyigit A, Gencer M, Aksoy N, Selek S (2006) Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med 100:1270–1276

    Article  PubMed  Google Scholar 

  81. Autrup H, Daneshvar B, Dragsted LO, Gamborg M, Hansen M, Loft S, Okkels H, Nielsen F, Nielsen PS, Raffn E, Wallin H, Knudsen LE (1999) Biomarkers for exposure to ambient air pollution—comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect 107:233–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Chen C, Arjomandi M, Balmes J, Tager I, Holland N (2007) Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. Environ Health Perspect 115:1732–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156:274–285

    Article  PubMed  Google Scholar 

  84. Kato T, Inoue T, Morooka T, Yoshimoto N, Node K (2006) Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmokers. Can J Physiol Pharmacol 84:523–529

    Article  CAS  PubMed  Google Scholar 

  85. Ahmadzadehfar H, Oguogho A, Efthimiou Y, Kritz H, Sinzinger H (2006) Passive cigarette smoking increases isoprostane formation. Life Sci 78:894–897

    Article  CAS  PubMed  Google Scholar 

  86. Kitano S, Hisatomi H, Hibi N, Kawano K, Harada S (2006) Improved method of plasma 8-isoprostane measurement and association analyses with habitual drinking and smoking. World J Gastroenterol 12:5846–5852

    CAS  PubMed  Google Scholar 

  87. Rossner P Jr, Gammon MD, Terry MB, Agrawal M, Zhang FF, Teitelbaum SL, Eng SM, Gaudet MM, Neugut AI, Santella RM (2006) Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15:639–644

    Article  CAS  PubMed  Google Scholar 

  88. Rossner P Jr, Terry MB, Gammon MD, Agrawal M, Zhang FF, Ferris JS, Teitelbaum SL, Eng SM, Neugut AI, Santella RM (2007) Plasma protein carbonyl levels and breast cancer risk. J Cell Mol Med 11:1138–1148

    Article  CAS  PubMed  Google Scholar 

  89. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Hemminki K, Pershagen G (1994) Cancer risk of air pollution: epidemiological evidence. Environ Health Perspect 102(Suppl 4):187–192

    Article  PubMed Central  PubMed  Google Scholar 

  91. Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 35:327–340

    Article  CAS  PubMed  Google Scholar 

  92. Li N, Kim S, Wang M, Froines J, Sioutas C, Nel A (2002) Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal Toxicol 14:459–486

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radim J. Sram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rossner, P., Sram, R.J. (2014). Environmental Pollution and Health Consequences. In: Tsukahara, H., Kaneko, K. (eds) Studies on Pediatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0679-6_17

Download citation

Publish with us

Policies and ethics