Skip to main content

Building Model Membranes with Lipids and Proteins: Dangers and Challenges

  • Chapter
  • First Online:
Membrane Proteins Production for Structural Analysis

Abstract

The objective of this review is to summarize the current art of protein reconstitution into lipid vesicles and to critically assess the methods and recent developments. First, we briefly describe the reasons for reconstitution of membrane proteins into artificial membranes, highlighting any specificities of the membrane. We then go on to describe the currently popular methods emphasizing their qualities and shortcomings. We will then review several more recent or more recently popular methods that can be used to improve reconstitution in some circumstances before concluding by highlighting some of the remaining challenges that biochemists face, wishing to improve reconstitution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MR, Cheng KH, Huang J (2007) Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A 104:5372–5377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassé F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca2 + -dependent transbilayer movement of phospholipid. J Biol Chem 271:17205–17210

    Article  PubMed  Google Scholar 

  • Baykal-Caglar E, Hassan-Zadeh E, Saremi B, Huang J (2012) Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity. Biochim Biophys Acta 1818:2598–2604

    Article  CAS  PubMed  Google Scholar 

  • Campillo C, Sens P, Köster D, Pontani LL, Lévy D, Bassereau P, Nassoy P, Sykes C (2013) Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophys J 104:1248–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng HT, London E (2011) Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J 100:2671–2678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng HT, Megha, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiantia S, Schwille P, Klymchenko AS, London E (2011) Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophys J 100:L1–L3

    Google Scholar 

  • Contreras FX, Sánchez-Magraner L, Alonso A, Goñi FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779–1786

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Hong S (1998) Chromatophore heterogeneity explains phenomena seen in Rhodobacter sphaeroides previously attributed to supercomplexes. Photosynth Res 55:357–362

    Article  CAS  Google Scholar 

  • Dezi M, Di Cicco A, Bassereau P, Lévy D (2013) Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. Proc Natl Acad Sci U S A 110:7276–7281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doeven MK, Folgering JHA, Krasnikov V, Geertsma E, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B. (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves RP, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S (2006) Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat Methods 3:1007–1012

    Article  PubMed  Google Scholar 

  • Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison S, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K + channel. J Gen Physiol 111:741–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helenius A, Sarvas M, Simons K (1981) Asymmetric and symmetric membrane reconstitution by detergent elimination. Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis. Eur J Biochem 116:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hofacker M, Gompf S, Zutz A, Presenti C, Haase W, van der Does C, Model K, Tampé R (2007) Structural and functional fingerprint of the mitochondrial ATP-binding cassette transporter Mdl1 from Saccharomyces cerevisiae. J Biol Chem 282:3951–3961

    Article  CAS  PubMed  Google Scholar 

  • Hwang WL, Chen M, Cronin B, Holden MA, Bayley H (2008) Asymmetric droplet interface bilayers. J Am Chem Soc 130:5878–5879

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Verméglio A, Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c 2 and cytochrome bc 1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975:336–345

    Article  CAS  Google Scholar 

  • Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270:17250–17256

    Article  CAS  PubMed  Google Scholar 

  • Lavergne J, Joliot P, Verméglio A (1989) Partial equilibration of photosynthetic carriers under weak illumination: a theoretical and experimental study. Biochim Biophys Acta 975:347–355

    Google Scholar 

  • Levy D, Milhiet PE (2013) Imaging of transmembrane proteins directly incorporated within supported lipid bilayers using atomic force microscopy. Methods Mol Biol 950:343–357

    PubMed  Google Scholar 

  • López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 3:2071

    PubMed Central  PubMed  Google Scholar 

  • Mouritsen OG (2011) Lipids, curvature, and nano-medicine. Eur J Lipid Sci Technol 113:1174–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Pantaler E, Kamp D, Haest CW (2000) Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length. Biochim Biophys Acta 1509:397–408

    Article  CAS  PubMed  Google Scholar 

  • Pennoyer JD, Kramer HJ, van Grondelle R, Westerhuis WH, Amesz J, Niederman RA (1985) Excitation energy transfer in Rhodopseudomonas sphaeroides chromatophore membranes fused with liposomes. FEBS Lett 182:145–150

    Article  CAS  PubMed  Google Scholar 

  • Poulsen LR, López-Marqués RL, Palmgren MG (2008) Flippases: still more questions than answers. Cell Mol Life Sci 65:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Rapp M, Seppälä S, Granseth E, von Heijne G (2007) Emulating membrane protein evolution by rational design. Science 315:1282–1284

    Article  CAS  PubMed  Google Scholar 

  • Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Natl Acad Sci U S A 108:9431–9436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigaud JL, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  PubMed  Google Scholar 

  • Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta 1231:223–246

    Article  PubMed  Google Scholar 

  • Rigaud J-L, Moser G, Lacapere JJ, Olofsen A, Levy D, Ranck JL (1997) Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol 118:226–235

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ, Green C (1974) The rate of cholesterol ‘flip-flop’ in lipid bilayers and its relation to membrane sterol pools. FEBS Lett 42:108–111

    Article  CAS  PubMed  Google Scholar 

  • Sumino A, Dewa T, Takeuchi T, Sugiura R, Sasaki N, Misawa N, Tero R, Urisu T, Gardiner AT, Cogdell RJ, Hashimoto H, Nango M (2011) Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis. Biomacromolecules 12:2850–2858

    Article  CAS  PubMed  Google Scholar 

  • Theiler R, Niederman RA (1991) Localization of chromatophore proteins of Rhodobacter sphaeroides. I. Rapid Ca(2 + )-induced fusion of chromatophores with phosphatidylglycerol liposomes for proteinase delivery to the luminal membrane surface. J Biol Chem 266:23157–23162

    CAS  PubMed  Google Scholar 

  • Wang D, Kühlbrandt W (1992) Three-dimensional electron diffraction of plant light-harvesting complex. Biophys J 61:287–297

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Sturgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sturgis, J. (2014). Building Model Membranes with Lipids and Proteins: Dangers and Challenges. In: Mus-Veteau, I. (eds) Membrane Proteins Production for Structural Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0662-8_9

Download citation

Publish with us

Policies and ethics