Skip to main content

Overexpression of Membrane Proteins in Saccharomyces cerevisiae for Structural and Functional Studies: A Focus on the Rabbit Ca2+-ATPase Serca1a and on the Yeast Lipid “Flippase” Complex Drs2p/Cdc50p

  • Chapter
  • First Online:
Membrane Proteins Production for Structural Analysis

Abstract

Membrane proteins (MPs) such as transporters, receptors, and ion channels exert key cellular functions. MPs account for one quarter of the proteins encoded by the human genome but for up to two thirds of known druggable targets, highlighting their critical pharmaceutical importance. Hence, defining the function of MPs at a molecular level and obtaining high-resolution structural information is a crucial issue; unfortunately, it has remained a difficult task to prepare and crystallize sufficient quantities of MPs for structural analysis. Heterologous expression systems have been significantly improved in the recent years, and the challenge is now to translate these improvements to crystal structures. This chapter begins with an overview of the potential of the yeast Saccharomyces cerevisiae as a host for overexpression and purification of MPs for structural purposes; a variety of already-solved structures of MPs overexpressed in S. cerevisiae are presented and the methodologies used to obtain these structures are discussed. It also examines the case of the rabbit Ca2+-ATPase Serca1a, which was expressed in S. cerevisiae in our laboratory, and describes the critical steps that led to the determination of the three-dimensional structure of this MP. Finally, expression, solubilization, stability in detergent, and functional characterization of a complex of two MPs, namely the lipid transporter (“flippase”) complex Drs2p/Cdc50p, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC (2006) Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17:1632–1642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen JP (1995) Dissection of the functional domains of the sarcoplasmic reticulum Ca2+-ATPase by site-directed mutagenesis. Biosci Rep 15:243–261

    CAS  PubMed  Google Scholar 

  • Andersen JP, Vilsen B (1992) Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 267:19383–19387

    CAS  PubMed  Google Scholar 

  • Antaloae AV, Montigny C, le Maire M, Watson KA, Sorensen TL (2013) Optimisation of recombinant production of active human cardiac SERCA2a ATPase. PLoS One 8:e71842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnou B, Montigny C, Morth JP, Nissen P, Jaxel C, Moller JV, Maire M (2011) The Plasmodium falciparum Ca2+-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans 39:823–831

    CAS  PubMed  Google Scholar 

  • Arsenieva D, Symersky J, Wang Y, Pagadala V, Mueller DM (2010) Crystal structures of mutant forms of the yeast F1 ATPase reveal two modes of uncoupling. J Biol Chem 285:36561–36569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berrier C, Pozza A, de Lacroix deLA, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288(38):27307–27314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bigelow DJ, Inesi G (1992) Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum. Biochim Biophys Acta 1113:323–338

    CAS  PubMed  Google Scholar 

  • Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340

    CAS  PubMed  Google Scholar 

  • Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9:22–26

    CAS  PubMed  Google Scholar 

  • Blagovic B, Rupcic J, Mesaric M, Georgiu K, Maric V (2001) Lipid composition of brewer’s yeast. Food Technol Biotechnol 39:175–181

    CAS  Google Scholar 

  • Blagovic B, Rupcic J, Mesaric M, Maric V (2005) Lipid analysis of the plasma membrane and mitochondria of brewer’s yeast. Folia Microbiol (Praha) 50:24–30

    CAS  Google Scholar 

  • Bleve G, Di Sansebastiano GP, Grieco F (2011) Over-expression of functional Saccharomyces cerevisiae GUP1, induces proliferation of intracellular membranes containing ER and Golgi resident proteins. Biochim Biophys Acta 1808:733–744

    CAS  PubMed  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    CAS  PubMed  Google Scholar 

  • Brandl CJ, Green NM, Korczak B, MacLennan DH (1986) Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607

    CAS  PubMed  Google Scholar 

  • Britton Z, Young C, Can O, McNeely P, Naranjo A, Robinson A (2011) Membrane protein expression in Saccharomyces cerevisiae. In: Robinson A (ed) Production of membrane proteins: strategies for production and isolation. Wiley-VCH, Weinheim

    Google Scholar 

  • Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JC (2010) CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol Chem 285:40562–40572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, Klomp LW, Lomri N, Berger R, Scharschmidt BF, Knisely AS, Houwen RH, Freimer NB (1998) A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18:219–224

    CAS  PubMed  Google Scholar 

  • Canadi Juresic G, Blagovic B (2011) The influence of fermentation conditions and recycling on the phospholipid and fatty acid composition of the brewer’s yeast plasma membranes. Folia Microbiol (Praha) 56:215–224

    CAS  Google Scholar 

  • Cardi D, Montigny C, Arnou B, Jidenko M, Marchal E, le Maire M, Jaxel C (2010a) Heterologous expression and affinity purification of eukaryotic membrane proteins in view of functional and structural studies: the example of the sarcoplasmic reticulum Ca2+-ATPase. Method Mol Biol 601:247–267

    CAS  Google Scholar 

  • Cardi D, Pozza A, Arnou B, Marchal E, Clausen JD, Andersen JP, Krishna S, Moller JV, le Maire M, Jaxel C (2010b) Purified E255 L mutant SERCA1a and purified PfATP6 are sensitive to SERCA-type inhibitors but insensitive to artemisinins. J Biol Chem 285:26406–26416

    CAS  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Celik E, Calik P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118

    CAS  PubMed  Google Scholar 

  • Centeno F, Deschamps S, Lompre AM, Anger M, Moutin MJ, Dupont Y, Palmgren MG, Villalba JM, Moller JV, Falson P et al (1994) Expression of the sarcoplasmic reticulum Ca2+-ATPase in yeast. FEBS Lett 354:117–122

    CAS  PubMed  Google Scholar 

  • Chapman-Smith A, Cronan JE Jr (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci 24:359–363

    CAS  PubMed  Google Scholar 

  • Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR (2006) Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7:1503–1517

    CAS  PubMed  Google Scholar 

  • Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32:786–795

    CAS  PubMed  Google Scholar 

  • Chiba Y, Jigami Y (2007) Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 11:670–676

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, Inesi G, MacLennan DH (1989) Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339:476–478

    CAS  PubMed  Google Scholar 

  • Coleman JA, Kwok MC, Molday RS (2009) Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem 284:32670–32679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman JA, Quazi F, Molday RS (2012) Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta 1831:555–574

    PubMed Central  PubMed  Google Scholar 

  • Consler TG, Persson BL, Jung H, Zen KH, Jung K, Prive GG, Verner GE, Kaback HR (1993) Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 90:6934–6938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cronan JE Jr (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265:10327–10333

    CAS  PubMed  Google Scholar 

  • Daleke DL (2007) Phospholipid flippases. J Biol Chem 282:821–825

    CAS  PubMed  Google Scholar 

  • Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly DE, Kelly S, Schweizer E, Schuller HJ, Hojad U, Greiner E, Finger K (1999) Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15:601–614

    CAS  PubMed  Google Scholar 

  • David-Bosne S, Florent I, Lund-Winther AM, Hansen JB, Buch-Pedersen M, Machillot P, le Maire M, Jaxel C (2013) Antimalarial screening via large-scale purification of Plasmodium falciparum Ca2+-ATPase 6 and in vitro studies. FEBS J 280(21):5419–5429

    CAS  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    CAS  PubMed  Google Scholar 

  • Degani C, Boyer PD (1973) A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 248:8222–8226

    CAS  PubMed  Google Scholar 

  • Devaux PF, Herrmann A, Ohlwein N, Kozlov MM (2008) How lipid flippases can modulate membrane structure. Biochim Biophys Acta 1778:1591–1600

    CAS  PubMed  Google Scholar 

  • Diers IV, Rasmussen E, Larsen PH, Kjaersig IL (1991) Yeast fermentation processes for insulin production. Bioprocess Technol 13:166–76.

    Google Scholar 

  • Dux L, Martonosi A (1983) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem 258:2599–2603

    CAS  PubMed  Google Scholar 

  • Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium Ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    CAS  PubMed  Google Scholar 

  • Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol Biol Cell 18:295–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12:1623–1627

    CAS  PubMed  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(546):563–547

    Google Scholar 

  • Gourdon P, Liu XY, Skjorringe T, Morth JP, Moller LB, Pedersen BP, Nissen P (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475:59–64

    CAS  PubMed  Google Scholar 

  • Graham TR (2004) Flippases and vesicle-mediated protein transport. Trends Cell Biol 14:670–677

    CAS  PubMed  Google Scholar 

  • Griffith DA, Delipala C, Leadsham J, Jarvis SM, Oesterhelt D (2003) A novel yeast expression system for the overproduction of quality-controlled membrane proteins. FEBS Lett 553:45–50

    CAS  PubMed  Google Scholar 

  • Grisshammer R, Tate CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28:315–422

    CAS  PubMed  Google Scholar 

  • Guarente L, Yocum RR, Gifford P (1982) A GAL10–CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A 79:7410–7414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunge N (1983) Yeast DNA plasmids. Annu Rev Microbiol 37:253–276

    CAS  PubMed  Google Scholar 

  • Hasselbach W, Makinose M (1961) [The calcium pump of the “relaxing granules” of muscle and its dependence on ATP-splitting]. Biochem Z 333:518–528

    CAS  PubMed  Google Scholar 

  • Hauser H (2000) Short-chain phospholipids as detergents. Biochim Biophys Acta 1508:164–181

    CAS  PubMed  Google Scholar 

  • Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2013) Neutral phospholipids stimulate Na, K-ATPase activity: a specific lipid-protein interaction. J Biol Chem 288:10073–10081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    CAS  PubMed  Google Scholar 

  • Howard EM, Roepe PD (2003) Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes. Biochemistry 42:3544–3555

    CAS  PubMed  Google Scholar 

  • Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13:3162–3177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquot A, Montigny C, Hennrich H, Barry R, le Maire M, Jaxel C, Holthuis J, Champeil P, Lenoir G (2012) Stimulation by phosphatidylserine of Drs2p/Cdc50p lipid translocase dephosphorylation is controlled by phoshatidylinositol-4-phosphate. J Biol Chem 287:13249–13261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jidenko M, Nielsen RC, Sorensen TL, Moller JV, le Maire M, Nissen P, Jaxel C (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:11687–11691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jidenko M, Lenoir G, Fuentes JM, le Maire M, Jaxel C (2006) Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expr Purif 48:32–42

    CAS  PubMed  Google Scholar 

  • Kapri-Pardes E, Katz A, Haviv H, Mahmmoud Y, Ilan M, Khalfin-Penigel I, Carmeli S, Yarden O, Karlish SJ (2011) Stabilization of the alpha2 isoform of Na, K-ATPase by mutations in a phospholipid binding pocket. J Biol Chem 286:42888–42899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A (2012a) The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337:473–476

    CAS  Google Scholar 

  • Kellosalo J, Kajander T, Honkanen R, Goldman A (2012b) Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases. Mol Membr Biol 30:64–74

    Google Scholar 

  • Kinnunen PK, Holopainen JM (2000) Mechanisms of initiation of membrane fusion: role of lipids. Biosci Rep 20:465–482

    CAS  PubMed  Google Scholar 

  • Kitson SM, Mullen W, Cogdell RJ, Bill RM, Fraser NJ (2011) GPCR production in a novel yeast strain that makes cholesterol-like sterols. Methods 55:287–292

    CAS  PubMed  Google Scholar 

  • Lagane B, Gaibelet G, Meilhoc E, Masson JM, Cezanne L, Lopez A (2000) Role of sterols in modulating the human mu-opioid receptor function in Saccharomyces cerevisiae. J Biol Chem 275:33197–33200

    CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Lee KM, DaSilva NA (2005) Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22:431–440

    CAS  PubMed  Google Scholar 

  • Lee AG, East JM (1998) The effects of phospholipid structure on the function of a calcium pump. Biochem Soc Trans 26:359–365

    CAS  PubMed  Google Scholar 

  • Lee JK, Stroud RM (2010) Unlocking the eukaryotic membrane protein structural proteome. Curr Opin Struct Biol 20:464–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenoir G, Menguy T, Corre F, Montigny C, Pedersen PA, Thines D, le Maire M, Falson P (2002) Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca2+-ATPase. Biochim Biophys Acta 1560:67–83

    CAS  PubMed  Google Scholar 

  • Lenoir G, Picard M, Moller JV, le Maire M, Champeil P, Falson P (2004) Involvement of the L6-7 loop in SERCA1a Ca2+-ATPase activation by Ca2+ (or Sr2+) and ATP. J Biol Chem 279:32125–32133

    CAS  PubMed  Google Scholar 

  • Lenoir G, Jaxel C, Picard M, le Maire M, Champeil P, Falson P (2006) Conformational changes in sarcoplasmic reticulum Ca2+-ATPase mutants: effect of mutations either at Ca2+-binding site II or at tryptophan 552 in the cytosolic domain. Biochemistry 45:5261–5270

    CAS  PubMed  Google Scholar 

  • Lenoir G, Williamson P, Holthuis JC (2007) On the origin of lipid asymmetry: the flip side of ion transport. Curr Opin Chem Biol 11:654–661

    CAS  PubMed  Google Scholar 

  • Lenoir G, Williamson P, Puts CF, Holthuis JC (2009) Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter drs2p. J Biol Chem 284:17956–17967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li WZ, Sherman F (1991) Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 11:666–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Hays FA, Roe-Zurz Z, Vuong L, Kelly L, Ho CM, Robbins RM, Pieper U, O’Connell JD 3rd, Miercke LJ, Giacomini KM, Sali A, Stroud RM (2009) Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening. J Mol Biol 385:820–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403

    CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  PubMed  Google Scholar 

  • Lopez-Marques RL, Holthuis JC, Pomorski TG (2011) Pumping lipids with P4-ATPases. Biol Chem 392:67–76

    CAS  PubMed  Google Scholar 

  • Lund S, Orlowski S, de Foresta B, Champeil P, le Maire M, Moller JV (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem 264:4907–4915

    CAS  PubMed  Google Scholar 

  • Ma J, Ito A (2002) Tyrosine residues near the FAD binding site are critical for FAD binding and for the maintenance of the stable and active conformation of rat monoamine oxidase A. J Biochem 131:107–111

    CAS  PubMed  Google Scholar 

  • Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, Tsukihara T (2004a) Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J Mol Biol 338:103–114

    CAS  Google Scholar 

  • Ma J, Kubota F, Yoshimura M, Yamashita E, Nakagawa A, Ito A, Tsukihara T (2004b) Crystallization and preliminary crystallographic analysis of rat monoamine oxidase A complexed with clorgyline. Acta Crystallogr D Biol Crystallogr 60:317–319

    Google Scholar 

  • Marchand A, Winther AM, Holm PJ, Olesen C, Montigny C, Arnou B, Champeil P, Clausen JD, Vilsen B, Andersen JP, Nissen P, Jaxel C, Moller JV, le Maire M (2008) Crystal structure of D351A and P312A mutant forms of the mammalian sarcoplasmic reticulum Ca2+ -ATPase reveals key events in phosphorylation and Ca2+ release. J Biol Chem 283:14867–14882

    CAS  PubMed  Google Scholar 

  • Maruyama K, MacLennan DH (1988) Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc Natl Acad Sci U S A 85:3314–3318

    CAS  PubMed Central  PubMed  Google Scholar 

  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR (1984) Human hepatitis B vaccine from recombinant yeast. Nature 307:178–180

    CAS  PubMed  Google Scholar 

  • Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    CAS  PubMed  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    CAS  PubMed  Google Scholar 

  • Midgett CR, Madden DR (2007) Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 160:265–274

    CAS  PubMed  Google Scholar 

  • Miras R, Cuillel M, Catty P, Guillain F, Mintz E (2001) Purification of heterologous sarcoplasmic reticulum Ca2+-ATPase Serca1a allowing phosphoenzyme and Ca2+-affinity measurements. Protein Expr Purif 22:299–306

    CAS  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    CAS  PubMed  Google Scholar 

  • Mueller DM, Puri N, Kabaleeswaran V, Terry C, Leslie AG, Walker JE (2004) Ni-chelate-affinity purification and crystallization of the yeast mitochondrial F1-ATPase. Protein Expr Purif 37:479–485

    CAS  PubMed  Google Scholar 

  • Nagy Z, Montigny C, Leverrier P, Yeh S, Goffeau A, Garrigos M, Falson P (2006) Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie 88:1665–1671

    CAS  PubMed  Google Scholar 

  • Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci U S A 101:10614–10619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nury H, Dahout-Gonzalez C, Trezeguet V, Lauquin GJ, Brandolin G, Pebay-Peyroula E (2006) Relations between structure and function of the mitochondrial ADP/ATP carrier. Annu Rev Biochem 75:713–741

    CAS  PubMed  Google Scholar 

  • Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    CAS  PubMed  Google Scholar 

  • Op den Kamp JA (1979) Lipid asymmetry in membranes. Annu Rev Biochem 48:47–71

    CAS  PubMed  Google Scholar 

  • Osterberg M, Kim H, Warringer J, Melen K, Blomberg A, von Heijne G (2006) Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:11148–11153

    PubMed Central  PubMed  Google Scholar 

  • Pagadala V, Vistain L, Symersky J, Mueller DM (2011) Characterization of the mitochondrial ATP synthase from yeast Saccharomyces cerevisae. J Bioenerg Biomembr 43:333–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RP (2008) ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 47:268–278

    CAS  PubMed  Google Scholar 

  • Pedersen PA, Rasmussen JH, Joorgensen PL (1996) Expression in high yield of pig alpha 1 beta 1 Na, K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J Biol Chem 271:2514–2522

    CAS  PubMed  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114

    CAS  PubMed  Google Scholar 

  • Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14:1240–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pompon D (1988) cDNA cloning and functional expression in yeast Saccharomyces cerevisiae of beta-naphthoflavone-induced rabbit liver P-450 LM4 and LM6. Eur J Biochem 177:285–293

    CAS  PubMed  Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Method Enzymol 272:51–64

    CAS  Google Scholar 

  • Poulsen LR, Lopez-Marques RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG (2008a) The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell 20:658–676

    CAS  Google Scholar 

  • Poulsen LR, Lopez-Marques RL, Palmgren MG (2008b) Flippases: still more questions than answers. Cell Mol Life Sci 65:3119–3125

    CAS  Google Scholar 

  • Pouny Y, Weitzman C, Kaback HR (1998) In vitro biotinylation provides quantitative recovery of highly purified active lactose permease in a single step. Biochemistry 37:15713–15719

    CAS  PubMed  Google Scholar 

  • Powl AM, East JM, Lee AG (2008) Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL. Biochemistry 47:12175–12184

    CAS  PubMed  Google Scholar 

  • Prive GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    CAS  PubMed  Google Scholar 

  • Pryor EE Jr, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME (2013) Structure of the integral membrane protein CAAX protease Ste24p. Science 339:1600–1604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puts CF, Panatala R, Hennrich H, Tsareva A, Williamson P, Holthuis JC (2012) Mapping functional interactions in a heterodimeric phospholipid pump. J Biol Chem 287:30529–30540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    CAS  PubMed  Google Scholar 

  • Rosing J, Tans G, Govers-Riemslag JW, Zwaal RF, Hemker HC (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255:274–283

    CAS  PubMed  Google Scholar 

  • Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K (2004) Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell 15:3418–3432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz LD, Hofmann KJ, Mylin LM, Montgomery DL, Ellis RW, Hopper JE (1987) Regulated overproduction of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast. Gene 61:123–133

    CAS  PubMed  Google Scholar 

  • Schwarz E, Oesterhelt D, Reinke H, Beyreuther K, Dimroth P (1988) The sodium ion translocating oxalacetate decarboxylase of Klebsiella pneumoniae. Sequence of the biotin-containing alpha-subunit and relationship to other biotin-containing enzymes. J Biol Chem 263:9640–9645

    CAS  PubMed  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 459:446–450

    CAS  PubMed  Google Scholar 

  • Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105:5739–5744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorensen TL, Moller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    CAS  PubMed  Google Scholar 

  • Sorensen TL, Olesen C, Jensen AM, Moller JV, Nissen P (2006) Crystals of sarcoplasmic reticulum Ca2+-ATPase. J Biotechnol 124:704–716

    CAS  PubMed  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    CAS  PubMed  Google Scholar 

  • Stolz J, Darnhofer-Demar B, Sauer N (1995) Rapid purification of a functionally active plant sucrose carrier from transgenic yeast using a bacterial biotin acceptor domain. FEBS Lett 377:167–171

    CAS  PubMed  Google Scholar 

  • Strock C, Cavagna M, Peiffer WE, Sumbilla C, Lewis D, Inesi G (1998) Direct demonstration of Ca2+ binding defects in sarco-endoplasmic reticulum Ca2+ ATPase mutants overexpressed in COS-1 cells transfected with adenovirus vectors. J Biol Chem 273:15104–15109

    CAS  PubMed  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    CAS  PubMed  Google Scholar 

  • Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:467–471

    CAS  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    CAS  PubMed  Google Scholar 

  • Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H (2007) How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc Natl Acad Sci U S A 104:19831–19836

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Velden LM, Wichers CG, van Breevoort AE, Coleman JA, Molday RS, Berger R, Klomp LW, van deGSF (2010) Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. J Biol Chem 285:40088–40096

    PubMed Central  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Vilsen B, Andersen JP, Clarke DM, MacLennan DH (1989) Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:21024–21030

    CAS  PubMed  Google Scholar 

  • Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in Saccharomyces cerevisiae. Yeast 12:259–265

    CAS  PubMed  Google Scholar 

  • Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH, Roe-Zurz Z, Risenmay AJ, Sali A, Stroud RM (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499:107–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    CAS  PubMed  Google Scholar 

  • Weis BL, Schleiff E, Zerges W (2013) Protein targeting to subcellular organelles via MRNA localization. Biochim Biophys Acta 1833:260–273

    Google Scholar 

  • West RW Jr, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4:2467–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  • White SH (1998–2014) Membrane protein of 3D known structure, http://blanco.biomol.uci.edu/mpstruc/

  • Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    CAS  PubMed  Google Scholar 

  • Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature 392:835–839

    CAS  PubMed  Google Scholar 

  • Zhang Z, Lewis D, Strock C, Inesi G, Nakasako M, Nomura H, Toyoshima C (2000) Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase. Biochemistry 39:8758–8767

    CAS  PubMed  Google Scholar 

  • Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Raphaëlle Barry for her initial help in the “flippase” project, and specifically for construction of the co-expression plasmid, and Stéphanie David-Bosne for stimulating discussions.

This work was supported by the French Infrastructure for Integrated Structural Biology (FRISBI) and by grants from the Agence Nationale pour la Recherche and the Ile de France region (Domaine d’Intérêt Majeur Maladies Infectieuses, DIM MALINF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lenoir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montigny, C. et al. (2014). Overexpression of Membrane Proteins in Saccharomyces cerevisiae for Structural and Functional Studies: A Focus on the Rabbit Ca2+-ATPase Serca1a and on the Yeast Lipid “Flippase” Complex Drs2p/Cdc50p. In: Mus-Veteau, I. (eds) Membrane Proteins Production for Structural Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0662-8_6

Download citation

Publish with us

Policies and ethics