Skip to main content
  • 1331 Accesses

Abstract

Memory design is commonly composed of two parts: the data arrays and the peripheral circuits. The data array is essentially a two-dimensional expansion of memory cells repetitively, which determines the way to retrieve data from particular cells in the array with limited I/O interface. The peripheral circuits mainly include many levels of decoders as well as readout sense amplifiers. Due to the use of nonelectrical states of emerging nonvolatile memory devices, new cells structures as well as agreeing readout circuits are needed for their unique read and write operations with performance evaluation. In this chapter, three different memory cell designs, crossbar structure for ReRAM, 1T1R structure for STT-RAM, and tape-like structure for domain-wall nanowire, are discussed with the agreeing readout circuits illustrated. Their performance models are presented as well if they are different from traditional designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afifi A, Ayatollahi A, Raissi F (2009) Implementation of biologically plausible spiking neural network models on the memristor crossbar-based cmos/nano circuits. In: IEEE European Conference on Circuit theory and design, 2009. ECCTD 2009. pp 563–566

    Google Scholar 

  2. Ben-Jamaa MH, Gaillardon PE, Clermidy F, O’Connor I, Sacchetto D, De Micheli G, Leblebici Y (2011) Silicon nanowire arrays and crossbars: Top-down fabrication techniques and circuit applications. Sci Adv Mater 3(3):466–476

    Article  Google Scholar 

  3. Borghetti J, Li Z, Straznicky J, Li X, Ohlberg DA, Wu W, Stewart DR, Williams RS (2009) A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc Natl Acad Sci 106(6):1699–1703

    Article  Google Scholar 

  4. Chen A, Lin MR (2011) Variability of resistive switching memories and its impact on crossbar array performance. In: 2011 IEEE International Reliability physics symposium (IRPS), pp MY–7

    Google Scholar 

  5. Chen Y, Li H, Wang X, Zhu W, Xu W, Zhang T (2010) A nondestructive self-reference scheme for spin-transfer torque random access memory (stt-ram). In: Design, automation & test in europe conference & exhibition (DATE), 2010, IEEE, pp 148–153

    Google Scholar 

  6. Gopalakrishnan K, Shenoy R, Rettner C, Virwani K, Bethune D, Shelby R, Burr G, Kellock A, King R, Nguyen K, et al (2010) Highly-scalable novel access device based on mixed ionic electronic conduction (miec) materials for high density phase change memory (pcm) arrays. In: IEEE 2010 symposium on VLSI technology (VLSIT), pp 205–206

    Google Scholar 

  7. Hu XS, Khitun A, Likharev KK, Niemier MT, Bao M, Wang K (2008) Design and defect tolerance beyond cmos. In: Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system synthesis, ACM, Springer, New York, pp 223–230

    Google Scholar 

  8. Jeong G, Cho W, Ahn S, Jeong H, Koh G, Hwang Y, Kim K (2003a) A 0.24-μm 2.0-v 1t1mtj 16-kb nonvolatile magnetoresistance ram with self-reference sensing scheme. IEEE J Solid-State Circ 38(11):1906–1910

    Article  Google Scholar 

  9. Jeong G, Cho W, Ahn S, Jeong H, Koh G, Hwang Y, Kim K (2003b) A 0.24-μm 2.0-v 1t1mtj 16-kb nonvolatile magnetoresistance ram with self-reference sensing scheme. IEEE J Solid-State Circ 38(11):1906–1910

    Article  Google Scholar 

  10. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano lett 10(4):1297–1301

    Article  Google Scholar 

  11. Kaeriyama S, Sakamoto T, Sunamura H, Mizuno M, Kawaura H, Hasegawa T, Terabe K, Nakayama T, Aono M (2005) A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J Solid-State Circ 40(1):168–176

    Article  Google Scholar 

  12. Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2011) A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano lett 12(1):389–395

    Article  Google Scholar 

  13. Kügeler C, Meier M, Rosezin R, Gilles S, Waser R (2009) High density 3d memory architecture based on the resistive switching effect. Solid-State Electron 53(12):1287–1292

    Article  Google Scholar 

  14. Lewis DL, Lee HH (2009) Architectural evaluation of 3d stacked rram caches. In: IEEE International Conference on 3D system integration, 2009, 3DIC 2009, pp 1–4

    Google Scholar 

  15. Morris D, Bromberg D, Zhu JGJ, Pileggi L (2012) mlogic: Ultra-low voltage non-volatile logic circuits using stt-mtj devices. In: Proceedings of the 49th Annual Design Automation Conference, ACM, pp 486–491

    Google Scholar 

  16. Mouttet BL (2007) Programmable crossbar signal processor. US Patent 7,302,513

    Google Scholar 

  17. Park WY, Kim GH, Seok JY, Kim KM, Song SJ, Lee MH, Hwang CS (2010) A pt/tio2/ti schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21(19):195,201

    Article  Google Scholar 

  18. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neur Netw 23(7):881–886

    Article  Google Scholar 

  19. Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80(2):021,926

    Google Scholar 

  20. Rowlands G, Rahman T, Katine J, Langer J, Lyle A, Zhao H, Alzate J, Kovalev A, Tserkovnyak Y, Zeng Z, et al (2011) Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl Phys Lett 98(10):102,509–102,509

    Article  Google Scholar 

  21. Schechter S, Loh GH, Straus K, Burger D (2010) Use ecp, not ecc, for hard failures in resistive memories. In: ACM SIGARCH computer rachitecture news, ACM, vol 38, Springer, Newyork, pp 141–152

    Google Scholar 

  22. Seevinck E, van Beers PJ, Ontrop H (1991) Current-mode techniques for high-speed vlsi circuits with application to current sense amplifier for cmos sram’s. IEEE J Solid-State Circ 26(4):525–536

    Article  Google Scholar 

  23. Sharad M, Fan D, Roy K (2013a) Spin-neurons: A possible path to energy-efficient neuromorphic computers. J Appl Phys 114(23):234,906

    Article  Google Scholar 

  24. Sharad M, Fan D, Roy K (2013b) Ultra low power associative computing with spin neurons and resistive crossbar memory. In: Proceedings of the 50th Annual Design Automation Conference, ACM, p 107

    Google Scholar 

  25. Snider G (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36):365,202

    Google Scholar 

  26. Snider GS, Williams RS (2007) Nano/cmos architectures using a field-programmable nanowire interconnect. Nanotechnology 18(3):035,204

    Google Scholar 

  27. Tada M, Sakamoto T, Banno N, Aono M, Hada H, Kasai N (2010) Nonvolatile crossbar switch using tiox/tasioy solid electrolyte. IEEE Trans electron Dev 57(8):1987–1995

    Article  Google Scholar 

  28. Thoziyoor S, Muralimanohar N, Ahn JH, Jouppi NP (2008) Cacti 5.1. HP Laboratories, April 2

    Google Scholar 

  29. Trinh HP, Zhao W, Klein JO, Zhang Y, Ravelsona D, Chappert C (2012) Domain wall motion based magnetic adder. Electron lett 48(17):1049–1051

    Article  Google Scholar 

  30. Tu D, Liu M, Wang W, Haruehanroengra S (2007) Three-dimensional cmol: Three-dimensional integration of cmos/nanomaterial hybrid digital circuits. Micro Nano Lett, IET 2(2):40–45

    Article  Google Scholar 

  31. Vontobel PO, Robinett W, Kuekes PJ, Stewart DR, Straznicky J, Williams RS (2009) Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20(42):425,204

    Google Scholar 

  32. Williams R (2008) How we found the missing memristor. IEEE Spectrum 45(12):28–35

    Article  Google Scholar 

  33. Xu C, Dong X, Jouppi NP, Xie Y (2011) Design implications of memristor-based rram cross-point structures. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2011, IEEE, pp 1–6

    Google Scholar 

  34. Zhao H, Lyle A, Zhang Y, Amiri P, Rowlands G, Zeng Z, Katine J, Jiang H, Galatsis K, Wang K, et al (2011) Low writing energy and sub nanosecond spin torque transfer switching of in-plane magnetic tunnel junction for spin torque transfer random access memory. J Appl Phys 109(7):07C720–07C720

    Google Scholar 

  35. Zhao H, Glass B, Amiri PK, Lyle A, Zhang Y, Chen YJ, Rowlands G, Upadhyaya P, Zeng Z, Katine J, et al (2012) Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy. J Phys D: Appl Phys 45(2):025,001

    Google Scholar 

  36. Ziegler MM, Stan MR (2003) Cmos/nano co-design for crossbar-based molecular electronic systems. IEEE Trans Nanotechnol 2(4):217–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, H., Wang, Y. (2014). Nonvolatile Circuit Design. In: Design Exploration of Emerging Nano-scale Non-volatile Memory. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0551-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0551-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0550-8

  • Online ISBN: 978-1-4939-0551-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics