Skip to main content

Nonvolatile State Identification and NVM SPICE

  • Chapter
  • First Online:
Design Exploration of Emerging Nano-scale Non-volatile Memory

Abstract

Hybrid integration of CMOS and nonvolatile memory (NVM) devices has become the technology foundation for emerging nonvolatile memory based computing. Therefore, it is under great interest inincluding the emerging new NVM devices in the standard CMOS design flow. The primary challenge to validate a hybrid design with both CMOS and nonvolatile devices is to develop a SPICE-like simulator that can simulate the dynamic behavior accurately and efficiently. The previous approaches either ignore dynamic effect without considering nonvolatile states for dynamic behavior or need complex equivalent circuits to represent those devices. This chapter details a new modified nodal analysis for nonvolatile memory devices with identified nonelectrical state variables for dynamic behavior. As such, compact SPICE-like implementation can be derived for the new nonvolatile memory devices in the hybrid NVM/CMOS designs. As demonstrated by a number of examples, the developed NVM-SPICE simulator can not only capture dynamic behaviors of emerging NVM devices but also improve simulation efficiency by around 100× compared to the previous equivalent circuit based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baibich MN, Broto J, Fert A, Van Dau FN, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001) fe/(001) cr magnetic superlattices. Phys Rev Lett 61(21):2472

    Article  Google Scholar 

  2. Bernevig BA, Hughes TL, Zhang SC (2006) Quantum spin hall effect and topological phase transition in hgte quantum wells. Science 314(5806):1757–1761

    Article  Google Scholar 

  3. Biolek Z, Biolek D, Biolkova V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2):210–214

    Google Scholar 

  4. Brinkman W, Dynes R, Rowell J (1970) Tunneling conductance of asymmetrical barriers. J Appl Phys 41(5):1915–1921

    Article  Google Scholar 

  5. Brüne C, Liu C, Novik E, Hankiewicz E, Buhmann H, Chen Y, Qi X, Shen Z, Zhang S, Molenkamp L (2011) Quantum hall effect from the topological surface states of strained bulk hgte. Phys Rev Lett 106(12):126,803

    Article  Google Scholar 

  6. Chen Y, Analytis J, Chu JH, Liu Z, Mo SK, Qi XL, Zhang H, Lu D, Dai X, Fang Z et al (2009) Experimental realization of a three-dimensional topological insulator, bi2te3. Science 325(5937):178–181

    Article  Google Scholar 

  7. Cheng P, Song C, Zhang T, Zhang Y, Wang Y, Jia JF, Wang J, Wang Y, Zhu BF, Chen X et al (2010) Landau quantization of topological surface states in bi_ {2} se_ {3}. Phys Rev Lett 105(7):076,801

    Article  Google Scholar 

  8. Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y et al (2010) Control of multiple magnetic domain walls by current in a co/ni nano-wire. Appl Phys Expr 3(7):3004

    Article  Google Scholar 

  9. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theor 18(5):507–519

    Article  Google Scholar 

  10. Dietrich S, Angerbauer M, Ivanov M, Gogl D, Hoenigschmid H, Kund M, Liaw C, Markert M, Symanczyk R, Altimime L et al (2007) A nonvolatile 2-mbit cbram memory core featuring advanced read and program control. IEEE J Solid-State Circuits 42(4):839–845

    Article  Google Scholar 

  11. Engel B, Akerman J, Butcher B, Dave R, DeHerrera M, Durlam M, Grynkewich G, Janesky J, Pietambaram S, Rizzo N et al (2005) A 4-mb toggle mram based on a novel bit and switching method. IEEE Trans Magn 41(1):132–136

    Article  Google Scholar 

  12. Fu L, Kane CL, Mele EJ (2007) Topological insulators in three dimensions. Phys Rev Lett 98(10):106,803

    Article  Google Scholar 

  13. Fujita T, Jalil MBA, Tan SG (2011) Topological insulator cell for memory and magnetic sensor applications. Appl Phys Expr 4(9):094,201. doi:10.7567/APEX.4.094201. http://apex.jsap.jp/link?APEX/4/094201/

  14. Gopalan C, Ma Y, Gallo T, Wang J, Runnion E, Saenz J, Koushan F, Blanchard P, Hollmer S (2011) Demonstration of conductive bridging random access memory (cbram) in logic cmos process. Solid-State Electron 58(1):54–61

    Article  Google Scholar 

  15. Grünberg P, Schreiber R, Pang Y, Brodsky M, Sowers H (1986) Layered magnetic structures: Evidence for antiferromagnetic coupling of fe layers across cr interlayers. Phys Rev Lett 57(19):2442

    Article  Google Scholar 

  16. Guan W, Long S, Liu Q, Liu M, Wang W (2008) Nonpolar nonvolatile resistive switching in cu doped ZrO2. IEEE Electron Device Lett 29(5):434–437

    Article  Google Scholar 

  17. Haemori M, Nagata T, Chikyow T (2009) Impact of cu electrode on switching behavior in a cu/hfo2/pt structure and resultant cu ion diffusion. Appl Phys Expr 2(6):1401

    Google Scholar 

  18. Harms JD, Ebrahimi F, Yao X, Wang JP (2010) Spice macromodel of spin-transfer torque-operated magnetic tunnel junctions. IEEE Trans Electron Dev 57(6):1425–1430

    Article  Google Scholar 

  19. Ho CW, Ruehli A, Brennan P (1975) The modified nodal approach to network analysis. IEEE Trans Circ Syst 22(6):504–509

    Article  Google Scholar 

  20. Ho Y, Huang GM, Li P (2011) Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans Circ Syst I Regular Pap 58(4):724–736

    Article  MathSciNet  Google Scholar 

  21. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava R, Hasan MZ (2008) A topological dirac insulator in a quantum spin hall phase. Nature 452(7190):970–974

    Article  Google Scholar 

  22. Hsieh D, Xia Y, Qian D, Wray L, Dil J, Meier F, Osterwalder J, Patthey L, Checkelsky J, Ong N et al (2009) A tunable topological insulator in the spin helical dirac transport regime. Nature 460(7259):1101–1105

    Article  Google Scholar 

  23. ITRS (2010) International technology roadmap of semiconductor. http://www.itrs.net

  24. Jo SH, Kim KH, Lu W (2009) High-density crossbar arrays based on a si memristive system. Nano Lett 9(2):870–874

    Article  Google Scholar 

  25. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301

    Article  Google Scholar 

  26. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(4):661

    Article  MATH  Google Scholar 

  27. Kaeriyama S, Sakamoto T, Sunamura H, Mizuno M, Kawaura H, Hasegawa T, Terabe K, Nakayama T, Aono M (2005) A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J Solid-State Circ 40(1):168–176

    Article  Google Scholar 

  28. Koch R, Deak J, Abraham D, Trouilloud P, Altman R, Lu Y, Gallagher W, Scheuerlein R, Roche K, Parkin S (1998) Magnetization reversal in micron-sized magnetic thin films. Phys Rev Lett 81(20):4512

    Article  Google Scholar 

  29. Kozicki MN, Balakrishnan M, Gopalan C, Ratnakumar C, Mitkova M (2005) Programmable metallization cell memory based on ag-ge-s and cu-ge-s solid electrolytes. In: IEEE non-volatile memory technology symposium, 2005, p 7

    Google Scholar 

  30. Kund M, Beitel G, Pinnow CU, Rohr T, Schumann J, Symanczyk R, Ufert KD, Muller G (2005) Conductive bridging ram (cbram): an emerging non-volatile memory technology scalable to sub 20nm. In: IEEE international electron devices meeting, 2005. IEDM technical digest, pp 754–757

    Google Scholar 

  31. Lee BS, Abelson JR, Bishop SG, Kang DH, Cheong Bk, Kim KB (2005) Investigation of the optical and electronic properties of ge2sb2te5 phase change material in its amorphous, cubic, and hexagonal phases. J Appl Phys 97(9):093,509–093,509

    Article  Google Scholar 

  32. McHenry M, Johnson F, Okumura H, Ohkubo T, Ramanan V, Laughlin D (2003) The kinetics of nanocrystallization and microstructural observations in finemet, nanoperm and hitperm nanocomposite magnetic materials. Scripta Mater 48(7):881–887

    Article  Google Scholar 

  33. Moore JE (2010) The birth of topological insulators. Nature 464(7286):194–198

    Article  Google Scholar 

  34. Nagel LW, Pederson DO (1973) SPICE: simulation program with integrated circuit emphasis. Electronics Research Laboratory, College of Engineering, University of California

    Google Scholar 

  35. Nenzi P, Holger V (2010) Ngspice users manual. http://www.itrs.net

  36. Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194

    Article  Google Scholar 

  37. Qi XL, Wu YS, Zhang SC (2006) Topological quantization of the spin hall effect in two-dimensional paramagnetic semiconductors. Phys Rev B 74(8):085,308

    Article  Google Scholar 

  38. Russo U, Kamalanathan D, Ielmini D, Lacaita AL, Kozicki MN (2009a) Study of multilevel programming in programmable metallization cell (pmc) memory. IEEE Trans Electron Dev 56(5):1040–1047

    Article  Google Scholar 

  39. Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M (2007) Electronic transport in ta2o5 resistive switch. Appl Phys Lett 91(9):092,110–092,110

    Article  Google Scholar 

  40. Schindler C, Thermadam SP, Waser R, Kozicki MN (2007) Bipolar and unipolar resistive switching in cu-doped sio2. IEEE Trans Electron Dev 54(10):2762–2768

    Article  Google Scholar 

  41. Shin S, Kim K, Kang SM (2010) Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans Comput Aid Des Integr Circ Syst 29(4):590–598

    Article  Google Scholar 

  42. Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl Phys A 94(3):515–519

    Article  Google Scholar 

  43. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83

    Article  Google Scholar 

  44. Tada M, Sakamoto T, Banno N, Aono M, Hada H, Kasai N (2010) Nonvolatile crossbar switch using tiox/tasioy solid electrolyte. IEEE Trans Electron Dev 57(8):1987–1995

    Article  Google Scholar 

  45. Thomas L, Yang SH, Ryu KS, Hughes B, Rettner C, Wang DS, Tsai CH, Shen KH, Parkin SS (2011) Racetrack memory: a high-performance, low-cost, non-volatile memory based on magnetic domain walls. In: 2011 IEEE international electron devices meeting (IEDM), pp 24–2

    Google Scholar 

  46. Venkatesan R, Kozhikkottu V, Augustine C, Raychowdhury A, Roy K, Raghunathan A (2012) Tapecache: a high density, energy efficient cache based on domain wall memory. In: Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design, ACM, pp 185–190

    Google Scholar 

  47. Wang KL, Zhao Z, Khitun A (2008) Spintronics for nanoelectronics and nanosystems. Thin Solid Films 517(1):184–190

    Article  Google Scholar 

  48. Wang X, Zhu W, Siegert M, Dimitrov D (2009) Spin torque induced magnetization switching variations. IEEE Trans Magn 45(4):2038–2041

    Article  Google Scholar 

  49. Wei X, Shi L, Walia R, Chong T, Zhao R, Miao X, Quek B (2006) Hspice macromodel of pcram for binary and multilevel storage. IEEE Trans Electron Dev 53(1):56–62

    Article  Google Scholar 

  50. Williams R (2008) How we found the missing memristor. IEEE Spectr 45(12):28–35

    Article  Google Scholar 

  51. Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnar S, Roukes M, Chtchelkanova AY, Treger D (2001) Spintronics: a spin-based electronics vision for the future. Science 294(5546):1488–1495

    Article  Google Scholar 

  52. Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB et al (2009) Memristor-cmos hybrid integrated circuits for reconfigurable logic. Nano Lett 9(10):3640–3645

    Article  Google Scholar 

  53. Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y, Cava R, et al (2009) Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nat Phys 5(6):398–402

    Article  Google Scholar 

  54. Yu S, Wong HS (2011) Compact modeling of conducting-bridge random-access memory (cbram). IEEE Trans Electron Dev 58(5):1352–1360

    Article  Google Scholar 

  55. Zyuzin A, Burkov A (2011) Thin topological insulator film in a perpendicular magnetic field. Phys Rev B 83(19):195,413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, H., Wang, Y. (2014). Nonvolatile State Identification and NVM SPICE. In: Design Exploration of Emerging Nano-scale Non-volatile Memory. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0551-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0551-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0550-8

  • Online ISBN: 978-1-4939-0551-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics