Skip to main content

MicroRNAs and Chronic Lymphocytic Leukemia

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

MicroRNA abnormalities are involved in the development and progression of chronic lymphocytic leukemia (CLL). In the majority of CLL malignant cluster of differentiation CD5+ (B-1) clones, the expression of miR-15a/16 is decreased relative to polyclonal CD5− (B-2) cells. Levels of the anti-apoptotic protein, bcl-2, correlate with the deletion of the Dleu2 region on chromosome 13q14 containing the mir-15a/16-1 loci. The expansion of CD5+ B cells and development of B-1 clones usually precedes CLL disease and is referred to as monoclonal B lymphocytosis (MBL). An early event in MBL may decrease miR-15a/16 expression. In the New Zealand black mouse model of CLL, there is a mutation in the mir-15a/16-1 loci resulting in decreased expression of miR-15a/16 due to a processing defect. Since this is a germline mutation, induced pluripotent stem cells and hematopoietic stem cells were employed to determine the role of decreased miR-15a/16 on B-1 lineage development. Enforced overexpression of miR-15a/16 leads to almost exclusive B-2 development. These results suggest that decreased miR-15a/16 is critical for the development of B-1 cells and the progression to malignant B-1 clonal expansion.

Support: This work was supported by NCI R01CA129826 (ER) and an NSF SIR award (ER)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt R, Wilhelm F, et al. ABCG2 expression is correlated neither to side population nor to hematopoietic progenitor function in human umbilical cord blood. Exp Hematol. 2009;37(2):294–301.

    PubMed  CAS  Google Scholar 

  2. Anokye-Danso F, Trivedi CM, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–88.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Arnold CP, Tan R, et al. MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Res. 2011;21(5):798–810.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Bissels U, Bosio A, et al. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    PubMed  CAS  Google Scholar 

  6. Calin GA, Cimmino A, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 2008;105(13):5166–71.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Calin GA, Croce CM. Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes. Blood. 2009;114(23):4761–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Calin GA, Dumitru CD, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Calin GA, Liu CG, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Chen CZ, Li L, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6.

    PubMed  CAS  Google Scholar 

  11. Chen SY, Huang YC, et al. An overview of concepts for cancer stem cells. Cell Transplant. 2011;20(1):113–20.

    PubMed  CAS  Google Scholar 

  12. Chena C, Avalos JS, et al. Biallelic deletion 13q14.3 in patients with chronic lymphocytic leukemia: cytogenetic, FISH and clinical studies. Eur J Haematol. 2008;81(2):94–9.

    PubMed  Google Scholar 

  13. Cimmino A, Calin GA, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Corcoran MM, Rasool O, et al. Detailed molecular delineation of 13q14.3 loss in B-cell chronic lymphocytic leukemia. Blood. 1998;91(4):1382–90.

    PubMed  CAS  Google Scholar 

  15. Dagklis A, Fazi C, et al. The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood. 2009;114(1):26–32.

    PubMed  CAS  Google Scholar 

  16. Dalerba P, Clarke MF. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007;1(3):241–2.

    PubMed  CAS  Google Scholar 

  17. di Iasio MG, Norcio A, et al. SOCS1 is significantly up-regulated in Nutlin-3-treated p53(wild-type) B chronic lymphocytic leukemia (B-CLL) samples and shows an inverse correlation with miR-155. Invest New Drugs. 2012;30(6):2403–6.

    PubMed  CAS  Google Scholar 

  18. Ding L, Han M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 2007;17(8):411–6.

    PubMed  CAS  Google Scholar 

  19. Dohner H. The use of molecular markers in selecting therapy for CLL. Clin Adv Hematol Oncol. 2005;3(2):103–4.

    PubMed  Google Scholar 

  20. Dohner H, Stilgenbauer S, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    PubMed  CAS  Google Scholar 

  21. Dorshkind K, Montecino-Rodriguez E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol. 2007;7(3):213–9.

    PubMed  CAS  Google Scholar 

  22. Driessens G, Beck B, et al. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488(7412):527–30.

    PubMed  CAS  Google Scholar 

  23. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645–52.

    PubMed  CAS  Google Scholar 

  24. Edelmann J, Holzmann K, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood.2012;120(24):4783–94.

    PubMed  CAS  Google Scholar 

  25. Eulalio A, Behm-Ansmant I, et al. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8(1):9–22.

    PubMed  CAS  Google Scholar 

  26. Eystathioy T, Jakymiw A, et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 2003;9(10):1171–3.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Fabbri M, Bottoni A, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Facon T, Avet-Loiseau H, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood. 2001;97(6):1566–71.

    PubMed  CAS  Google Scholar 

  29. Fazi C, Scarfo L, et al. General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood. 2011;118(25):6618–25.

    PubMed  CAS  Google Scholar 

  30. Fernando TR, Rodriguez-Malave NI, et al. MicroRNAs in B cell development and malignancy. J Hematol Oncol. 2012;5:7.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Filipowicz W, Bhattacharyya SN, et al. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

    PubMed  CAS  Google Scholar 

  32. Fulci V, Chiaretti S, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007;109(11):4944–51.

    PubMed  CAS  Google Scholar 

  33. Ghia P, Caligaris-Cappio F. Monoclonal B-cell lymphocytosis: right track or red herring? Blood. 2012;119(19):4358–62.

    PubMed  CAS  Google Scholar 

  34. Ghia P, Prato G, et al. Monoclonal CD5+ and CD5− B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood. 2004;103(6):2337–42.

    PubMed  CAS  Google Scholar 

  35. Ghosn EE, Yamamoto R, et al. Distinct B-cell lineage commitment distinguishes adult bone marrow hematopoietic stem cells. Proc Natl Acad Sci USA. 2012;109(14):5394–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Goodell MA, Brose K, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    PubMed  CAS  Google Scholar 

  37. Gribben JG, O’Brien S. Update on therapy of chronic lymphocytic leukemia. J Clin Oncol. 2011;29(5):544–50.

    PubMed  Google Scholar 

  38. Guo S, Lu J, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA. 2010;107(32):14229–34.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Hadnagy A, Gaboury L, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006;312(19):3701–10.

    PubMed  CAS  Google Scholar 

  40. Hallek M, Cheson BD, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Hammarsund M, Corcoran MM, et al. Characterization of a novel B-CLL candidate gene-DLEU7-located in the 13q14 tumor suppressor locus. FEBS Lett. 2004;556(1–3):75–80.

    PubMed  CAS  Google Scholar 

  42. Han YC, Park CY, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207(3):475–89.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Hanlon K, Rudin CE, et al. Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One. 2009;4(9):e7169.

    PubMed Central  PubMed  Google Scholar 

  44. Hirschmann-Jax C, Foster AE, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101(39):14228–33.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Johnnidis JB, Camargo FD. Isolation and functional characterization of side population stem cells. Methods Mol Biol. 2008;430:183–93.

    PubMed  CAS  Google Scholar 

  46. Kikushige Y, Ishikawa F, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20(2):246–59.

    PubMed  CAS  Google Scholar 

  47. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.

    PubMed  CAS  Google Scholar 

  48. Klein U, Lia M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.

    PubMed  CAS  Google Scholar 

  49. Lanasa MC, Allgood SD, et al. Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis. Leukemia. 2010;24(1):133–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Landgren O, Albitar M, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009;360(7):659–67.

    PubMed  CAS  Google Scholar 

  51. Landgren O, Tilly H. Epidemiology, pathology and treatment of non-follicular indolent lymphomas. Leuk Lymphoma. 2008;49(Suppl. 1):35–42.

    PubMed  Google Scholar 

  52. Laurie CC, Laurie CA, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44(6):642–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Lee RC, Feinbaum RL, et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    PubMed  CAS  Google Scholar 

  54. Li S, Moffett HF, et al. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One. 2011;6(3):e16956.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Liao R, Sun J, et al. MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem. 2008;104(3):805–17.

    PubMed  CAS  Google Scholar 

  56. Lin KK, Goodell MA. Purification of hematopoietic stem cells using the side population. Methods Enzymol. 2006;420:255–64.

    PubMed  CAS  Google Scholar 

  57. Liu J, Carmell MA, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41.

    PubMed  CAS  Google Scholar 

  58. Liu WH, Tao KS, et al. Differences in the properties and mirna expression profiles between side populations from hepatic cancer cells and normal liver cells. PLoS One. 2011;6(8):e23311.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol. 2010;344(1):16–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Marti G, Abbasi F, et al. Overview of monoclonal B-cell lymphocytosis. Br J Haematol. 2007;139(5):701–8.

    PubMed  CAS  Google Scholar 

  61. Marti GE. MBL: mostly benign lymphocytes, but…. Blood. 2011;118(25):6480–1.

    PubMed  Google Scholar 

  62. Marti GE, Carter P, et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2003;52(1):1–12.

    PubMed  Google Scholar 

  63. Marti GE, Metcalf RA, et al. The natural history of a lymphoproliferative disorder in aged NZB mice. Curr Top Microbiol Immunol. 1995;194:117–26.

    PubMed  CAS  Google Scholar 

  64. Meister G, Landthaler M, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.

    PubMed  CAS  Google Scholar 

  65. Melton C, Judson RL, et al. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463(7281):621–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Mertens D, Philippen A, et al. Chronic lymphocytic leukemia and 13q14: miRs and more. Leuk Lymphoma. 2009;50(3):502–5.

    PubMed  CAS  Google Scholar 

  67. Migliazza A, Bosch F, et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood. 2001;97(7):2098–104.

    PubMed  CAS  Google Scholar 

  68. Mowery YM, Lanasa MC. Clinical aspects of monoclonal B-cell lymphocytosis. Cancer Control. 2012;19(1):8–17.

    PubMed  Google Scholar 

  69. Nana-Sinkam SP, Croce CM. MicroRNA in chronic lymphocytic leukemia: transitioning from laboratory-based investigation to clinical application. Cancer Genet Cytogenet. 2010;203(2):127–33.

    PubMed  CAS  Google Scholar 

  70. Nutt SL, Busslinger M. Monoallelic expression of Pax5: a paradigm for the haploinsufficiency of mammalian Pax genes? Biol Chem. 1999;380(6):601–11.

    PubMed  CAS  Google Scholar 

  71. O’Connell RM, Rao DS, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94.

    PubMed Central  PubMed  Google Scholar 

  72. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25(5):635–46.

    PubMed  CAS  Google Scholar 

  73. Patten PE, Chu CC, et al. IGHV unmutated and mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions. Blood. 2012;120(24):4802–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Pekarsky Y, Santanam U, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3.

    PubMed  CAS  Google Scholar 

  75. Peng B, Sherr DH, et al. A cultured malignant B-1 line serves as a model for Richter’s syndrome. J Immunol. 1994;153(4):1869–80.

    PubMed  CAS  Google Scholar 

  76. Perez-Chacon G, Llobet D, et al. TNFR-associated factor 2 deficiency in B lymphocytes predisposes to chronic lymphocytic leukemia/small lymphocytic lymphoma in mice. J Immunol. 2012;189(2):1053–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Pfister O, Oikonomopoulos A, et al. Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res. 2008;103(8):825–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Phillips JA, Mehta K, et al. The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Res. 1992;52(2):437–43.

    PubMed  CAS  Google Scholar 

  79. Ramachandra S, Metcalf RA, et al. Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL. J Clin Invest. 1996;98(8):1788–93.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36.

    PubMed  CAS  Google Scholar 

  81. Raveche E, Dang A, et al. Analysis of NZB derived B-1 Malignancies. In: Melcher F, Potter M, editors. Mechanisms of B cell Neoplasia. Basel, Switzerland: Editiones Roche; 1993. p. 137–148.

    Google Scholar 

  82. Raveche ES, Salerno E, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood. 2007;109(12):5079–86.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Rawstron AC. Prevalence and characteristics of monoclonal B-cell lymphocytosis (MBL) in healthy individuals and the relationship with clinical disease. J Biol Regul Homeost Agents. 2004;18(2):155–60.

    PubMed  CAS  Google Scholar 

  84. Rawstron AC, Bennett FL, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–83.

    PubMed  CAS  Google Scholar 

  85. Rawstron AC, Shanafelt T, et al. Different biology and clinical outcome according to the absolute numbers of clonal B-cells in monoclonal B-cell lymphocytosis (MBL). Cytometry B Clin Cytom. 2010;78(Suppl. 1):19–23.

    Google Scholar 

  86. Rawstron AC, Shingles J, et al. Chronic lymphocytic leukaemia (CLL) and CLL-type monoclonal B-cell lymphocytosis (MBL) show differential expression of molecules involved in lymphoid tissue homing. Cytometry B Clin Cytom. 2010;78(Suppl. 1):42–6.

    Google Scholar 

  87. Rondeau G, Moreau I, et al. Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus. Mutat Res. 2001;458(3–4):55–70.

    PubMed  CAS  Google Scholar 

  88. Rossi D, Sozzi E, et al. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol. 2009;146(1):64–75.

    PubMed  Google Scholar 

  89. Rossi S, Shimizu M, et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010;116(6):945–52.

    PubMed  CAS  Google Scholar 

  90. Sachdeva M, Zhu S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA. 2009;106(9):3207–12.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Salerno E, Yuan Y, et al. The New Zealand black mouse as a model for the development and progression of chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2010;78(Suppl. 1):98–109.

    Google Scholar 

  92. Santanam U, Zanesi N, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA. 2010;107(27):12210–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Scaglione BJ, Salerno E, et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br J Haematol. 2007;139(5):645–57.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Scharenberg CW, Harkey MA, et al. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99(2):507–12.

    PubMed  CAS  Google Scholar 

  95. Schlade-Bartusiak K, Stembalska A, et al. Significant involvement of chromosome 13q deletions in progression of larynx cancer, detected by comparative genomic hybridization. J Appl Genet. 2005;46(4):407–13.

    PubMed  Google Scholar 

  96. Shim YK, Middleton DC, et al. Prevalence of monoclonal B-cell lymphocytosis: a systematic review. Cytometry B Clin Cytom. 2010;78(Suppl. 1):10–8.

    Google Scholar 

  97. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    PubMed  CAS  Google Scholar 

  98. Tay Y, Zhang J, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124–8.

    PubMed  CAS  Google Scholar 

  99. Tili E, Michaille JJ, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci USA. 2011;108(12):4908–13.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Tili E, Michaille JJ, et al. The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood. 2012;120(13):2631–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Volinia S, Galasso M, et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20(5):589–99.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Wang Y, Russell I, et al. MicroRNA and stem cell regulation. Curr Opin Mol Ther. 2009;11(3):292–8.

    PubMed  Google Scholar 

  103. Wightman B, Ha I, et al. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    PubMed  CAS  Google Scholar 

  104. Zapata JM, Krajewska M, et al. TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc Natl Acad Sci USA. 2004;101(47):16600–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Zhou B, Wang S, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA. 2007;104(17):7080–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Zhu DX, Zhu W, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012;33(7):1294–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Raveche Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Degheidy, H. et al. (2014). MicroRNAs and Chronic Lymphocytic Leukemia. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_9

Download citation

Publish with us

Policies and ethics