Skip to main content

Microvesicular Transfer of MicroRNA in Tumor Microenvironment

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

In recent years, the knowledge about control of tumor microenvironment has increased and emerged as an important player in tumorigenesis. The role of normal stromal cells in the tumor cells initiation and development has brought our vision to the forefront of cell-to-cell communication. In this chapter, we focus on the novel mechanism of communication between stromal and tumor cells, which is based on the exchange of microvesicles. We describe several, ever-growing pieces of evidence that microvesicles transfer messages through their lipid, protein, or nucleic acid contents. microRNA exchange is emerging as a key player in this communication. A better understanding of this sophisticated method of communication between normal and cancerous cells may lead to developing novel, innovative innovative approaches for cancer diagnostics and personalized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009 Apr;9(4):239–52 (PubMed PMID: 19279573. Pubmed Central PMCID: 3251309).

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Artacho-Cordon A, Artacho-Cordon F, Rios-Arrabal S, Calvente I, Nunez MI. Tumor microenvironment and breast cancer progression: a complex scenario. Cancer Biol Ther. 2012 Jan 1;13(1):14–24 (PubMed PMID: 22336584).

    PubMed  CAS  Google Scholar 

  3. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009 Jan;25(1):30–8 (PubMed PMID: 19054589).

    PubMed  CAS  Google Scholar 

  4. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010 Oct;277(19):3904–23 (PubMed PMID: 20840587).

    PubMed  CAS  Google Scholar 

  5. Edwards IJ. Proteoglycans in prostate cancer. Nat Rev Urol. 2012 Apr;9(4):196–206 (PubMed PMID: 22349653).

    PubMed  CAS  Google Scholar 

  6. Suryapranata H, Serruys PW, de Feyter PJ, van den Brand M, Beatt K, van Domburg R, et al. Coronary angioplasty immediately after thrombolysis in 115 consecutive patients with acute myocardial infarction. Am Heart J. 1988 Mar;115(3):519–29 (PubMed PMID: 2964182).

    PubMed  CAS  Google Scholar 

  7. Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010;12(6):R94 (PubMed PMID: 21067584. Pubmed Central PMCID: 3046435).

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004 Jul;6(1):17–32 (PubMed PMID: 15261139).

    PubMed  CAS  Google Scholar 

  9. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006 May;6(5):392–401 (PubMed PMID: 16572188).

    PubMed  CAS  Google Scholar 

  10. Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 2013 Jun;32(1–2):303–15 (PubMed PMID: 23114846).

    PubMed  Google Scholar 

  11. Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 2012 May-Jun;6(3):220–30 (PubMed PMID: 22863739. Pubmed Central PMCID: 3427236).

    PubMed Central  PubMed  Google Scholar 

  12. Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006 Jul;116(7):1955–62 (PubMed PMID: 16794736. Pubmed Central PMCID: 1481657).

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012 Jun;31(1–2):195–208 (PubMed PMID: 22101652).

    PubMed  Google Scholar 

  14. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995 Feb;1(2):149–53 (PubMed PMID: 7585012).

    PubMed  CAS  Google Scholar 

  15. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002 Apr 1;62(7):2162–8 (PubMed PMID: 11929839).

    PubMed  CAS  Google Scholar 

  16. Kang SY, Watnick RS. Regulation of tumor dormancy as a function of tumor-mediated paracrine regulation of stromal Tsp-1 and VEGF expression. APMIS. 2008 Jul-Aug;116(7–8):638–47 (PubMed PMID: 18834408).

    PubMed  CAS  Google Scholar 

  17. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989 Aug;8(2):98–101 (PubMed PMID: 2673568).

    PubMed  CAS  Google Scholar 

  18. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001 May 17;411(6835):375–9 (PubMed PMID: 11357145).

    PubMed  CAS  Google Scholar 

  19. Bronzert DA, Pantazis P, Antoniades HN, Kasid A, Davidson N, Dickson RB, et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5763–7 (PubMed PMID: 3039506. Pubmed Central PMCID: 298943).

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene. 2000 Sep 7;19(38):4337–45 (PubMed PMID: 10980609).

    PubMed  CAS  Google Scholar 

  21. Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 2000 Apr;57(4):1521–38 (PubMed PMID: 10760088).

    PubMed  CAS  Google Scholar 

  22. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20009–14 (PubMed PMID: 21041659. Pubmed Central PMCID: 2993333).

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003 Jun;3(6):401–10 (PubMed PMID: 12778130).

    PubMed  CAS  Google Scholar 

  24. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002 Dec 19–26;420(6917):860–7 (PubMed PMID: 12490959. Pubmed Central PMCID: 2803035).

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011 Dec;2(12):1117–33 (PubMed PMID: 22866203. Pubmed Central PMCID: 3411127).

    PubMed Central  PubMed  Google Scholar 

  26. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009 Jun 2;15(6):501–13 (PubMed PMID: 19477429. Pubmed Central PMCID: 2693960).

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle. 2010 Sep 1;9(17):3515–33 (PubMed PMID: 20855962. Pubmed Central PMCID: 3047617).

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012 Jan;12(1):9–22 (PubMed PMID: 22169972. Pubmed Central PMCID: 3401912).

    CAS  Google Scholar 

  29. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One. 2007;2(5):e416 (PubMed PMID: 17476338. Pubmed Central PMCID: 1855077).

    PubMed Central  PubMed  Google Scholar 

  30. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011 Feb 15;19(2):257–72 (PubMed PMID: 21316604. Pubmed Central PMCID: 3060401).

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Shibata W, Ariyama H, Westphalen CB, Worthley DL, Muthupalani S, Asfaha S, et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut. 2013 Feb;62(2):192–200 (PubMed PMID: 22362916).

    PubMed  Google Scholar 

  32. Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007 Jan-Feb;3(1):28–31 (PubMed PMID: 16969128. Pubmed Central PMCID: 2770734).

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood. 2004 Mar 1;103(5):1647–52 (PubMed PMID: 14630823).

    PubMed  CAS  Google Scholar 

  34. Sanchez C, Oskowitz A, Pochampally RR. Epigenetic reprogramming of IGF1 and leptin genes by serum deprivation in multipotential mesenchymal stromal cells. Stem Cells. 2009 Feb;27(2):375–82 (PubMed PMID: 19038795).

    PubMed  CAS  Google Scholar 

  35. Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, et al. Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis. 2011 Jul;32(7):964–72 (PubMed PMID: 21317300. Pubmed Central PMCID: 3128555).

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011 May;6(3):215–25 (PubMed PMID: 21421339).

    PubMed  CAS  Google Scholar 

  37. Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets. 2010 Jul;14(7):681–92 (PubMed PMID: 20446866).

    PubMed  CAS  Google Scholar 

  38. Mroue RM, El-Sabban ME, Talhouk RS. Connexins and the gap in context. Integr Biol (Camb). 2011 Apr;3(4):255–66 (PubMed PMID: 21437329).

    CAS  Google Scholar 

  39. Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G. Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol. 2012 Sep;47(5):407–23 (PubMed PMID: 22551357).

    PubMed  CAS  Google Scholar 

  40. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012 Jun 1;72(11):2768–79 (PubMed PMID: 22472119. Pubmed Central PMCID: 3367125).

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005 May 6;121(3):335–48 (PubMed PMID: 15882617).

    PubMed  CAS  Google Scholar 

  42. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4852–7 (PubMed PMID: 21368175. Pubmed Central PMCID: 3064359).

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011 Mar 1;71(5):1550–60 (PubMed PMID: 21343399).

    PubMed  CAS  Google Scholar 

  44. Pap E. The role of microvesicles in malignancies. Adv Exp Med Biol. 2011;714:183–99 (PubMed PMID: 21506015).

    PubMed  CAS  Google Scholar 

  45. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012 Dec 21;151(7):1542–56 (PubMed PMID: 23260141).

    PubMed  CAS  Google Scholar 

  46. Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion. 2006 Jul;46(7):1199–209 (PubMed PMID: 16836568).

    PubMed  Google Scholar 

  47. Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117 (PubMed PMID: 21939504. Pubmed Central PMCID: 3190352).

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Howlett AR, Bissell MJ. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 1993 Apr;2(2):79–89 (PubMed PMID: 8353596).

    PubMed  CAS  Google Scholar 

  49. Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ‘debris’. Semin Immunopathol. 2011 Sep;33(5):455–67 (PubMed PMID: 21318413).

    PubMed  Google Scholar 

  50. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967 May;13(3):269–88 (PubMed PMID: 6025241).

    PubMed  CAS  Google Scholar 

  51. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009 Aug;21(4):575–81 (PubMed PMID: 19442504).

    PubMed  CAS  Google Scholar 

  52. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009 Feb;19(2):43–51 (PubMed PMID: 19144520).

    PubMed  CAS  Google Scholar 

  53. Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012 Nov;44(11):2060–4 (PubMed PMID: 22903023).

    PubMed  CAS  Google Scholar 

  54. Friend C, Marovitz W, Henie G, Henie W, Tsuei D, Hirschhorn K, et al. Observations on cell lines derived from a patient with Hodgkin’s disease. Cancer Res. 1978 Aug;38(8):2581–91 (PubMed PMID: 78764).

    PubMed  CAS  Google Scholar 

  55. Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981 Jul 6;645(1):63–70 (PubMed PMID: 6266476).

    PubMed  CAS  Google Scholar 

  56. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983 Aug;97(2):329–39 (PubMed PMID: 6309857. Pubmed Central PMCID: 2112509).

    PubMed  CAS  Google Scholar 

  57. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985 Sep;101(3):942–8 (PubMed PMID: 2993317. Pubmed Central PMCID: 2113705).

    PubMed  CAS  Google Scholar 

  58. Ginestra A, La Placa MD, Saladino F, Cassara D, Nagase H, Vittorelli ML. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998 Sep-Oct;18(5A):3433–7 (PubMed PMID: 9858920).

    PubMed  CAS  Google Scholar 

  59. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer. 2003 Jan;39(2):184–91 (PubMed PMID: 12509950).

    PubMed  CAS  Google Scholar 

  60. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009 Nov 15;15(22):6830–40 (PubMed PMID: 19861441. Pubmed Central PMCID: 2783253).

    PubMed Central  PubMed  CAS  Google Scholar 

  61. D’Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012 Jun 15;26(12):1287–99 (PubMed PMID: 22713869. Pubmed Central PMCID: 3387656).

    PubMed Central  PubMed  Google Scholar 

  62. Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010 Nov;36(8):888–906 (PubMed PMID: 21049390).

    PubMed  CAS  Google Scholar 

  63. Cocucci E, Meldolesi J. Ectosomes. Curr Biol. 2011 Dec 6;21(23):R940–1 (PubMed PMID: 22153157).

    PubMed  CAS  Google Scholar 

  64. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011 Aug;68(16):2667–88 (PubMed PMID: 21560073. Pubmed Central PMCID: 3142546).

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med. 2012 Apr;271(4):400–13 (PubMed PMID: 22112042).

    PubMed  CAS  Google Scholar 

  66. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012 Feb;56(2):293–304 (PubMed PMID: 22285593).

    PubMed  CAS  Google Scholar 

  67. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010 Sep 10;73(10):1907–20 (PubMed PMID: 20601276).

    PubMed  CAS  Google Scholar 

  68. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012 Jul;64(3):676–705 (PubMed PMID: 22722893).

    Google Scholar 

  69. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009 Aug;9(8):581–93 (PubMed PMID: 19498381).

    PubMed  CAS  Google Scholar 

  70. Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012 Jan;44(1):11–5 (PubMed PMID: 22024155).

    PubMed  CAS  Google Scholar 

  71. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009 Jul 1;8(13):2014–8 (PubMed PMID: 19535896).

    PubMed  CAS  Google Scholar 

  72. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009 Jun;6(3):267–83 (PubMed PMID: 19489699).

    PubMed  CAS  Google Scholar 

  73. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006 Mar 13;172(6):923–35 (PubMed PMID: 16533950. Pubmed Central PMCID: 2063735).

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4 + T cells. Traffic. 2010 Jan;11(1):110–22 (PubMed PMID: 19912576. Pubmed Central PMCID: 2796297).

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011 Jan 27;117(4):e39–48 (PubMed PMID: 21041717).

    PubMed  CAS  Google Scholar 

  76. Mrvar-Brecko A, Sustar V, Jansa V, Stukelj R, Jansa R, Mujagic E, et al. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis. 2010 Apr 15;44(4):307–12 (PubMed PMID: 20199878).

    PubMed  CAS  Google Scholar 

  77. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006 Apr;Chap. 3:Unit 3 22 (PubMed PMID: 18228490).

    Google Scholar 

  78. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O’Neal W, et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 2009 Jun;23(6):1858–68 (PubMed PMID: 19190083. Pubmed Central PMCID: 2698655).

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Hosseini-Beheshti E, Pham S, Adomat H, Li N, Tomlinson Guns ES. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics. 2012 Oct;11(10):863–85 (PubMed PMID: 22723089. Pubmed Central PMCID: 3494141).

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One. 2012;7(3):e33037 (PubMed PMID: 22448232. Pubmed Central PMCID: 3308964).

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Connor DE, Exner T, Ma DD, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost. 2010 May;103(5):1044–52 (PubMed PMID: 20390225).

    PubMed  CAS  Google Scholar 

  82. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010 May 15;123(Pt 10):1603–11 (PubMed PMID: 20445011. Pubmed Central PMCID: 2864708).

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Marsh M, van Meer G. Cell biology. No ESCRTs for exosomes. Science. 2008 Feb 29;319(5867):1191–2 (PubMed PMID: 18309064).

    PubMed  CAS  Google Scholar 

  84. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008 Feb 29;319(5867):1244–7 (PubMed PMID: 18309083).

    PubMed  CAS  Google Scholar 

  85. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010 Jun 4;285(23):17442–52 (PubMed PMID: 20353945. Pubmed Central PMCID: 2878508).

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem. 2012 Jun 15;287(25):21384–95 (PubMed PMID: 22532571. Pubmed Central PMCID: 3375560).

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Beloribi S, Ristorcelli E, Breuzard G, Silvy F, Bertrand-Michel J, Beraud E, et al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One. 2012;7(10):e47480 (PubMed PMID: 23094054. Pubmed Central PMCID: 3477155).

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012 Jan;40(Database issue):D1241–4 (PubMed PMID: 21989406. Pubmed Central PMCID: 3245025).

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 2012 Feb 3;11(2):839–49 (PubMed PMID: 22148876).

    PubMed  CAS  Google Scholar 

  90. Khatua AK, Taylor HE, Hildreth JE, Popik W. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology. 2010 Apr 25;400(1):68–75 (PubMed PMID: 20153011. Pubmed Central PMCID: 2851184).

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Peters DL, Pretorius PJ. Origin, translocation and destination of extracellular occurring DNA–a new paradigm in genetic behaviour. Clin Chim Acta. 2011 May 12;412(11–12):806–11 (PubMed PMID: 21277292).

    PubMed  CAS  Google Scholar 

  92. Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol. 2012 Apr;23(2):91–7 (PubMed PMID: 22418571).

    PubMed  CAS  Google Scholar 

  93. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012 Jan-Feb;62(1):10–29 (PubMed PMID: 22237781).

    PubMed  Google Scholar 

  94. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature. 2001 May 17;411(6835):380–4 (PubMed PMID: 11357146).

    PubMed  CAS  Google Scholar 

  95. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4966–71 (PubMed PMID: 15051869. Pubmed Central PMCID: 387357).

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008 May;14(5):518–27 (PubMed PMID: 18438415).

    PubMed  CAS  Google Scholar 

  97. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011 Feb 24;470(7335):548–53 (PubMed PMID: 21326202. Pubmed Central PMCID: 3166217).

    PubMed Central  PubMed  CAS  Google Scholar 

  98. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003 Jul;200(4):429–47 (PubMed PMID: 12845611).

    PubMed  CAS  Google Scholar 

  99. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143–7 (PubMed PMID: 10102814).

    PubMed  CAS  Google Scholar 

  100. Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells. 2004;22(5):823–31 (PubMed PMID: 15342946).

    PubMed  Google Scholar 

  101. Wolfe M, Pochampally R, Swaney W, Reger RL. Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol. 2008;449:3–25 (PubMed PMID: 18370080).

    PubMed  Google Scholar 

  102. !!! INVALID CITATION!!!

    Google Scholar 

  103. Vallabhaneni KC, Tkachuk S, Kiyan Y, Shushakova N, Haller H, Dumler I, et al. Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells. Cardiovasc Res. 2011 Apr 1;90(1):113–21 (PubMed PMID: 21088115).

    PubMed  CAS  Google Scholar 

  104. Shoji M, Oskowitz A, Malone CD, Prockop DJ, Pochampally R. Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. J Atheroscler Thromb. 2011;18(6):464–74 (PubMed PMID: 21307612).

    PubMed  CAS  Google Scholar 

  105. Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol. 2007;180:263–83 (PubMed PMID: 17554513).

    PubMed  CAS  Google Scholar 

  106. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002 Jul 1;62(13):3603–8 (PubMed PMID: 12097260).

    PubMed  CAS  Google Scholar 

  107. Reddy BY, Lim PK, Silverio K, Patel SA, Won BW, Rameshwar P. The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer. 2012;2012:721659 (PubMed PMID: 22482060. Pubmed Central PMCID: 3296216).

    PubMed Central  PubMed  Google Scholar 

  108. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol. 2006 Jun;199(2):301–10 (PubMed PMID: 16574102).

    PubMed  CAS  Google Scholar 

  109. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol. 2007 Jul;83(3):241–7 (PubMed PMID: 17570034).

    PubMed  CAS  Google Scholar 

  110. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007 Sep 1;13(17):5020–7 (PubMed PMID: 17785552).

    PubMed  CAS  Google Scholar 

  111. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008 May;15(10):730–8 (PubMed PMID: 18401438).

    PubMed  CAS  Google Scholar 

  112. Feng B, Chen L. Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm. 2009 Dec;24(6):717–21 (PubMed PMID: 20025552).

    PubMed  CAS  Google Scholar 

  113. Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini FC. The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy. 2008;10(7):657–67 (PubMed PMID: 18985472).

    PubMed  CAS  Google Scholar 

  114. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009;4(4):e4992 (PubMed PMID: 19352430. Pubmed Central PMCID: 2661372).

    PubMed Central  PubMed  Google Scholar 

  115. Hogan NM, Dwyer RM, Joyce MR, Kerin MJ. Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer. 2012 Jul 1;131(1):1–7 (PubMed PMID: 22290082).

    PubMed  CAS  Google Scholar 

  116. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003 Nov 15;102(10):3837–44 (PubMed PMID: 12881305).

    PubMed  CAS  Google Scholar 

  117. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol. 2006 Jun;80(3):267–74 (PubMed PMID: 16214129).

    PubMed  CAS  Google Scholar 

  118. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011 Aug 27;378(9793):771–84 (PubMed PMID: 21802721. Pubmed Central PMCID: 3163848).

    PubMed  CAS  Google Scholar 

  119. van Doormaal FF, Kleinjan A, Di Nisio M, Buller HR, Nieuwland R. Cell-derived microvesicles and cancer. Neth J Med. 2009 Jul-Aug;67(7):266–73 (PubMed PMID: 19687520).

    PubMed  CAS  Google Scholar 

  120. Ginestra A, Miceli D, Dolo V, Romano FM, Vittorelli ML. Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res. 1999 Jul-Aug;19(4C):3439–45 (PubMed PMID: 10629632).

    PubMed  CAS  Google Scholar 

  121. Hakulinen J, Junnikkala S, Sorsa T, Meri S. Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol. 2004 Sep;34(9):2620–9 (PubMed PMID: 15307194).

    PubMed  CAS  Google Scholar 

  122. van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006 Jul;140(1):13–21 (PubMed PMID: 16877764).

    PubMed  CAS  Google Scholar 

  123. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 2002 May 20;195(10):1303–16 (PubMed PMID: 12021310. Pubmed Central PMCID: 2193755).

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology. 2005 Jun;128(7):1796–804 (PubMed PMID: 15940614).

    PubMed  CAS  Google Scholar 

  125. Abid Hussein MN, Boing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost. 2007 Nov;98(5):1096–107 (PubMed PMID: 18000616).

    PubMed  Google Scholar 

  126. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell. 2003 Jul 11;114(1):33–45 (PubMed PMID: 12859896).

    PubMed  CAS  Google Scholar 

  127. Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1933–8 (PubMed PMID: 15671173. Pubmed Central PMCID: 545583).

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Ambudkar SV, Sauna ZE, Gottesman MM, Szakacs G. A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol Sci. 2005 Aug;26(8):385–7 (PubMed PMID: 15978680. Pubmed Central PMCID: 1350964).

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003 Aug 1;63(15):4331–7 (PubMed PMID: 12907600).

    PubMed  CAS  Google Scholar 

  130. Castellana D, Zobairi F, Martinez MC, Panaro MA, Mitolo V, Freyssinet JM, et al. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res. 2009 Feb 1;69(3):785–93 (PubMed PMID: 19155311).

    PubMed  CAS  Google Scholar 

  131. Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 2013;13(10–11):1637–53 (PubMed PMID: 23335344).

    PubMed  CAS  Google Scholar 

  132. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009 May;20(5):1053–67 (PubMed PMID: 19389847. Pubmed Central PMCID: 2676194).

    PubMed Central  PubMed  CAS  Google Scholar 

  133. He J, Wang Y, Sun S, Yu M, Wang C, Pei X, et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton). 2012 Jul;17(5):493–500 (PubMed PMID: 22369283).

    Google Scholar 

  134. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007 Nov;1(2):129–37 (PubMed PMID: 19383393).

    PubMed  CAS  Google Scholar 

  135. Dreyer JL. New insights into the roles of microRNAs in drug addiction and neuroplasticity. Genome Med. 2010;2(12):92 (PubMed PMID: 21205279. Pubmed Central PMCID: 3025434).

    PubMed Central  PubMed  CAS  Google Scholar 

  136. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004 Jul;5(7):522–31 (PubMed PMID: 15211354).

    PubMed  CAS  Google Scholar 

  137. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205 (PubMed PMID: 17506695).

    PubMed  CAS  Google Scholar 

  138. Fabbri M, Calore F, Paone A, Galli R, Calin GA. Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol. 2013;754:137–48 (PubMed PMID: 22956499).

    PubMed  CAS  Google Scholar 

  139. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011 Aug 5;146(3):353–8 (PubMed PMID: 21802130. Pubmed Central PMCID: 3235919).

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–6 (PubMed PMID: 23036329).

    PubMed  CAS  Google Scholar 

  141. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003–8 (PubMed PMID: 21383194. Pubmed Central PMCID: 3064324).

    CAS  Google Scholar 

  142. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 Sep 1;39(16):7223–33 (PubMed PMID: 21609964. Pubmed Central PMCID: 3167594).

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Russo F, Di Bella S, Nigita G, Macca V, Lagana A, Giugno R, et al. miRandola: extracellular circulating microRNAs database. PLoS One. 2012;7(10):e47786 (PubMed PMID: 23094086. Pubmed Central PMCID: 3477145).

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci. 2012;17:2508–40 (PubMed PMID: 22652795).

    Google Scholar 

  145. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012 May-Jun;18(3):215–22 (PubMed PMID: 22647357. Pubmed Central PMCID: 3528102).

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 2011 Jun 23;30(25):2888–99 (PubMed PMID: 21317930).

    PubMed  CAS  Google Scholar 

  147. Harquail J, Benzina S, Robichaud GA. MicroRNAs and breast cancer malignancy: an overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark. 2012 Jan 1;11(6):269–80 (PubMed PMID: 23248185).

    PubMed  CAS  Google Scholar 

  148. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32(36):4294–303 (PubMed PMID: 23001043).

    PubMed  CAS  Google Scholar 

  149. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 2013;32(24):2992–3000 (PubMed PMID: 22797073).

    PubMed  CAS  Google Scholar 

  150. Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem. 2012 Jan 6;287(2):1397–405 (PubMed PMID: 22123823. Pubmed Central PMCID: 3256909).

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012 Aug 29;31(17):3513–23 (PubMed PMID: 22773185. Pubmed Central PMCID: 3433782).

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010;5(10):e13515 (PubMed PMID: 20976003. Pubmed Central PMCID: 2958125).

    PubMed Central  PubMed  Google Scholar 

  153. Palma J, Yaddanapudi SC, Pigati L, Havens MA, Jeong S, Weiner GA, et al. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 2012 Oct;40(18):9125–38 (PubMed PMID: 22772984. Pubmed Central PMCID: 3467054).

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–9 (PubMed PMID: 17486113).

    PubMed  CAS  Google Scholar 

  155. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006 May;20(5):847–56 (PubMed PMID: 16453000).

    PubMed  CAS  Google Scholar 

  156. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009 Dec 8;2(100):ra81 (PubMed PMID: 19996457).

    PubMed  Google Scholar 

  157. Weber C, Schober A, Zernecke A. MicroRNAs in arterial remodelling, inflammation and atherosclerosis. Curr Drug Targets. 2010 Aug;11(8):950–6 (PubMed PMID: 20415650).

    PubMed  CAS  Google Scholar 

  158. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes: Fit to deliver small RNA. Commun Integr Biol. 2010 Sep;3(5):447–50 (PubMed PMID: 21057637. Pubmed Central PMCID: 2974077).

    PubMed Central  PubMed  Google Scholar 

  159. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009;4(3):e4722 (PubMed PMID: 19266099. Pubmed Central PMCID: 2648987).

    PubMed Central  PubMed  Google Scholar 

  160. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics. 2010;11 Suppl 1:S6 (PubMed PMID: 20158877. Pubmed Central PMCID: 2822534).

    PubMed Central  PubMed  Google Scholar 

  161. Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P. microRNAs, gap junctional intercellular communication and mesenchymal stem cells in breast cancer metastasis. Curr Cancer Ther Rev. 2011 Aug;7(3):176–83 (PubMed PMID: 21886602. Pubmed Central PMCID: 3163384).

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008 Dec;10(12):1470–6 (PubMed PMID: 19011622. Pubmed Central PMCID: 3423894).

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Chiba M, Kimura M, Asari S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep. 2012 Nov;28(5):1551–8 (PubMed PMID: 22895844).

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010 Jul 9;39(1):133–44 (PubMed PMID: 20603081).

    PubMed  CAS  Google Scholar 

  165. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009 Sep;11(9):1143–9 (PubMed PMID: 19684575).

    PubMed  CAS  Google Scholar 

  166. Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res. 2010 Nov 1;70(21):8259–63 (PubMed PMID: 20841486. Pubmed Central PMCID: 2970756).

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Kizana E, Cingolani E, Marban E. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther. 2009 Sep;16(9):1163–8 (PubMed PMID: 19516277).

    PubMed  CAS  Google Scholar 

  168. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. (PubMed PMID: 21505438. Pubmed Central PMCID: 3104548).

    PubMed Central  PubMed  Google Scholar 

  169. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012 Jun;19(6):586–93 (PubMed PMID: 22664986).

    PubMed  CAS  Google Scholar 

  170. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010 Mar 5;140(5):652–65 (PubMed PMID: 20211135. Pubmed Central PMCID: 2924756).

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):E2110–6 (PubMed PMID: 22753494. Pubmed Central PMCID: 3412003).

    PubMed Central  PubMed  CAS  Google Scholar 

  172. Ghasemi R, Grassadonia A, Tinari N, Piccolo E, Natoli C, Tomao F, et al. Tumor-derived microvesicles: the metastasomes. Med Hypotheses. 2013 Jan;80(1):75–82 (PubMed PMID: 23177570).

    PubMed  CAS  Google Scholar 

  173. Ohno SI, Ishikawa A, Kuroda M. Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev. 2013;65(3):398–401 (PubMed PMID: 22981801).

    PubMed  CAS  Google Scholar 

  174. Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol. 2011 Mar;93(3):313–40 (PubMed PMID: 21216273. Pubmed Central PMCID: 3055956).

    PubMed Central  PubMed  Google Scholar 

  175. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010 Nov;78(9):838–48 (PubMed PMID: 20703216).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors disclose no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Pochampally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vallabhaneni, K., Penfornis, P., Orr, J., Chauhan, K., Pochampally, R. (2014). Microvesicular Transfer of MicroRNA in Tumor Microenvironment. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_17

Download citation

Publish with us

Policies and ethics