Skip to main content

MicroRNAs in the Development and Progression of Skin Cancer

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer
  • 1103 Accesses

Abstract

MicroRNAs are known to regulate the messenger RNA (mRNA) levels and protein expression of multiple genes and their products by binding to the 3′ untranslated region (3′-UTR) of target mRNAs and causing their degradation or inhibiting their translation. Numerous reports have demonstrated the importance of microRNAs in skin biology, with microRNAs regulating multiple processes in the skin in vivo and in skin cells in vitro. Keratinocytes are the predominant cells of the outer layer of skin, the epidermis, and microRNAs have been shown to regulate proliferation, differentiation, apoptosis, senescence, migration/invasion, and morphogenesis of these cells. In addition, microRNAs modulate proteins involved in angiogenesis and genome stability, as well as immune function. Since dysregulation of all of these cellular processes can contribute to the development, progression, and metastasis of cancer, it is perhaps not surprising that recent studies are beginning to show alterations in microRNA profiles in different skin cancers. Thus, differences in various microRNAs have been detected in melanoma and in the nonmelanoma skin cancers, basal and squamous cell carcinoma. In this chapter, we discuss the literature indicating a role of microRNAs in regulating skin structure and function as well as in the development, progression, and metastasis of skin cancer, focusing primarily on the nonmelanoma skin cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DMBA:

7,12-dimethylbenz(a)anthracene

GRHL-3:

Grainyhead-like 3

miRNA:

MicroRNA

miR:

MicroRNA

RISC:

RNA-induced silencing complex

TPA:

12-O-tetradecanoylphorbol 13-acetate

VEGF:

Vascular endothelial cell growth factor

References

  1. Sand M, Sand D, Altmeyer P, Bechara FG. MicroRNA in non-melanoma skin cancer. Cancer Biomark. 2012;11:253–7

    PubMed  CAS  Google Scholar 

  2. Schneider MR. MicroRNAs as novel players in skin development, homeostasis and disease. Br J Dermatol. 2012;166:22–8

    Article  PubMed  CAS  Google Scholar 

  3. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol. 2008;33:312–5

    Article  PubMed  CAS  Google Scholar 

  4. Lavker RM, Sun TT. Epidermal stem cells. J Invest Dermatol. 1983;81:121–7

    Article  Google Scholar 

  5. Tsuruta D, Hopkinson SB, Jones JC. Hemidesmosome protein dynamics in live epithelial cells. Cell Motil Cytoskeleton. 2003;54:122–34

    Article  PubMed  CAS  Google Scholar 

  6. Bergstresser PR, Taylor JR. Epidermal ‘turnover time’—a new examination. Br J Dermatol. 1977;96:503–9

    Article  PubMed  CAS  Google Scholar 

  7. Sueki H, Whitaker D, Buchsbaum M, Murphy GF. Novel interactions between dermal dendrocytes and mast cells in human skin. Implications for hemostasis and matrix repair. Lab Invest. 1993;69:160–72

    PubMed  CAS  Google Scholar 

  8. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–37

    Article  PubMed  CAS  Google Scholar 

  9. Donovan J. Review of the hair follicle origin hypothesis for basal cell carcinoma. Dermatol Surg. 2009;35:1311–23

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt KT, Ma A, Goldberg R, Medenica M. Multiple adnexal tumors and a parotid basal cell adenoma. J Am Acad Dermatol. 1991;25:960–4

    Article  PubMed  CAS  Google Scholar 

  11. Nuno-Gonzalez A, Vicente-Martin FJ, Pinedo-Moraleda F, Lopez-Estebaranz JL. High-risk cutaneous squamous cell carcinoma. Actas Dermosifiliogr. 2012;103:567–78

    Article  PubMed  CAS  Google Scholar 

  12. Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry (Mosc). 2000;65:2–27

    CAS  Google Scholar 

  13. Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A, Vallar L, Nashan D, Behrmann I, Kreis S. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res. 2010;70:4163–73

    Article  PubMed  CAS  Google Scholar 

  14. Bar-Eli M. Searching for the ‘melano-miRs’: miR-214 drives melanoma metastasis. EMBO J. 2011;30:1880–1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Glud M, Gniadecki R. MicroRNAs in the pathogenesis of malignant melanoma. J Eur Acad Dermatol Venereol. 2013;27:142–50

    Article  PubMed  CAS  Google Scholar 

  16. Segura MF, Belitskaya-Levy I, Rose AE, Zakrzewski J, Gaziel A, Hanniford D, Darvishian F, Berman RS, Shapiro RL, Pavlick AC, Osman I, Hernando E. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res. 2010;16:1577–86

    Article  PubMed  CAS  Google Scholar 

  17. Bell RE, Levy C. The three M’s: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res. 2011;24:1088–106

    Article  PubMed  CAS  Google Scholar 

  18. Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis. 2012;33:1823–32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci. 2009;53:169–75

    Article  PubMed  CAS  Google Scholar 

  20. Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006;38:356–362

    Article  PubMed  CAS  Google Scholar 

  21. Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, Andl CD, Seykora JT, Hannon GJ, Millar SE. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol. 2006;16:1041–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Teta M, Choi YS, Okegbe T, Wong G, Tam OH, Chong MM, Seykora JT, Nagy A, Littman DR, Andl T, Millar SE. Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin. Development. 2012;139:1405–16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Yi R, Pasolli HA, Landthaler M, Hafner M, Ojo T, Sheridan R, Sander C, O’Carroll D, Stoffel M, Tuschl T, Fuchs E. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci U S A. 2009;106:498–502

    Article  PubMed Central  PubMed  Google Scholar 

  24. King KE, Weinberg WC. p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog. 2007;46:716–24

    Article  PubMed  CAS  Google Scholar 

  25. Dai X, Segre JA. Transcriptional control of epidermal specification and differentiation. Curr Opin Genet Dev. 2004;14:485–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol. 2010;130:1249–57

    Article  PubMed  CAS  Google Scholar 

  27. Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H, Saintigny G, Dellambra E, Odorisio T, Mahe C, Calin GA, Candi E, Melino G. p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci U S A. 2012;109:1133–8

    Article  Google Scholar 

  28. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–229

    Article  PubMed  CAS  Google Scholar 

  29. Sonkoly E, Wei T, Pavez Lorie E, Suzuki H, Kato M, Torma H, Stahle M, Pivarcsi A. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol. 2010;130:124–34

    Article  PubMed  CAS  Google Scholar 

  30. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, Candi E. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ. 2008;15:1187–95

    Article  PubMed  CAS  Google Scholar 

  31. Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W, Grundhoff A, Knott A. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol. 2011;131:20–9

    Article  PubMed  CAS  Google Scholar 

  32. Bollinger Bollag W, Bollag RJ. 1,25-Dihydroxyvitamin D(3), phospholipase D and protein kinase C in keratinocyte differentiation. Mol Cell Endocrinol. 2001;177:173–82

    Article  PubMed  CAS  Google Scholar 

  33. Poumay Y, Pittelkow MR. Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol. 1995;104:271–6

    Article  PubMed  CAS  Google Scholar 

  34. Werner S. Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev. 1998;9:153–65

    Article  PubMed  CAS  Google Scholar 

  35. Hashimoto K. Regulation of keratinocyte function by growth factors. J Dermatol Sci. 2000;24 Suppl 1:46–50

    Article  Google Scholar 

  36. Pastore S, Mascia F, Mariani V, Girolomoni G. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008;128:1365–74

    Article  PubMed  CAS  Google Scholar 

  37. Amelio I, Lena AM, Viticchie G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, Russo G, Fortunato C, Bonanno E, Spagnoli LG, Aberdam D, Knight RA, Candi E, Melino G. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol. 2012;199:347–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Coqueret O. Linking cyclins to transcriptional control. Gene. 2002;299:35–55

    Article  PubMed  CAS  Google Scholar 

  39. Lena AM, Mancini M, Rivetti di Val Cervo P, Saintigny G, Mahe C, Melino G, Candi E. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem Biophys Res Commun. 2012;423:509–514

    Article  PubMed  CAS  Google Scholar 

  40. Ahmed MI, Mardaryev AN, Lewis CJ, Sharov AA, Botchkareva NV. MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci. 2011;124:3399–404

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, Kanakamedala K, Liu MF, Li Y. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:10144–9

    Article  PubMed Central  PubMed  Google Scholar 

  42. Dziunycz P, Iotzova-Weiss G, Eloranta JJ, Lauchli S, Hafner J, French LE, Hofbauer GF Squamous cell carcinoma of the skin shows a distinct microRNA profile modulated by UV radiation. J Invest Dermatol. 2010;130:2686–9

    Article  PubMed  CAS  Google Scholar 

  43. Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B, Grander D, Stahle M, Sonkoly E, Pivarcsi A. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem. 2012;287:29899–908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Sand M, Skrygan M, Georgas D, Sand D, Hahn SA, Gambichler T, Altmeyer P, Bechara FG. Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2012;68:119–26

    Article  PubMed  CAS  Google Scholar 

  45. Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q, Rank G, Srivastava S, Finlay MJ, Papenfuss AT, Pandolfi PP, Pearson RB, Jane SM. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell. 2011;20:635–48

    Article  PubMed  CAS  Google Scholar 

  46. Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z, Andersen B. The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene. 2012;32(12):1497–507

    Article  PubMed  CAS  Google Scholar 

  47. Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 2010;24:3950–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GF, Gerber AP, Detmar M. The Expression Levels of MicroRNA-361–5p and Its Target VEGFA Are Inversely Correlated in Human Cutaneous Squamous Cell Carcinoma. PLoS One. 2012;7:e49568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, Altmeyer P, Bechara FG. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012;167:847–55

    Article  PubMed  CAS  Google Scholar 

  50. Heffelfinger C, Ouyang Z, Engberg A, Leffell DJ, Hanlon AM, Gordon PB, Zheng W, Zhao H, Snyder MP, Bale AE. Correlation of global microRNA expression with basal cell carcinoma subtype. G3 (Bethesda). 2012;2:279–86

    Article  CAS  Google Scholar 

  51. Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, Bechara FG. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest. 2010;28:649–53

    Article  PubMed  CAS  Google Scholar 

  52. Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, Bernardini S, Mauriello A, Miano R, Spagnoli LG, Knight RA, Candi E, Melino G. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle. 2011;10:1121–31

    Article  PubMed  CAS  Google Scholar 

  53. Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, Kemeny L, Stahle M, Sonkoly E, Pivarcsi A. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol. 2011;131:1521–9

    Article  PubMed  CAS  Google Scholar 

  54. Yamane K, Jinnin M, Etoh T, Kobayashi Y, Shimozono N, Fukushima S, Masuguchi S, Maruo K, Inoue Y, Ishihara T, Aoi J, Oike Y, Ihn H. Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. J Mol Med (Berl). 2013;91:69–81

    Article  CAS  Google Scholar 

  55. Bostjancic E, Glavac D. Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat. 2008;17:95–102

    PubMed  Google Scholar 

  56. Wu N, Sulpice E, Obeid P, Benzina S, Kermarrec F, Combe S, Gidrol X. The miR-17 family links p63 protein to MAPK signaling to promote the onset of human keratinocyte differentiation. PLoS One. 2012;7:e45761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Contreras J, Rao DS. MicroRNAs in inflammation and immune responses. Leukemia. 2012;26:404–13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy B. Bollag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choudhary, V., Gullotto, M., Sato, L., Bollag, W. (2014). MicroRNAs in the Development and Progression of Skin Cancer. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_13

Download citation

Publish with us

Policies and ethics