Skip to main content

Molecular Testing in Paediatric Tumours

  • Chapter
Molecular Testing in Cancer

Abstract

Paediatric molecular diagnostics provides essential diagnostic and prognostic information that helps guide management for patients with a variety of tumours. Two specific tumour types will be discussed in this chapter: paediatric sarcomas and neuroblastoma. Paediatric sarcomas harbour specific and diagnostic molecular rearrangements, and the discussion will focus on Ewing sarcoma as the archetypal tumour family with a number of subtype-specific molecular rearrangements. Neuroblastoma has several molecular abnormalities that provide prognostic information critical to planning therapy. The two most common are NMYC amplification and 1p deletion; others are being investigated and will be discussed. The tools used to detect such abnormalities will be presented, and a number of newer cutting-edge technologies are included as they make their way from the research bench to the diagnostic laboratory. With the tools of molecular pathology, the pathologist is playing a central role in delivering personalized medicine to paediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackall CL, Meltzer PS, Helman LJ. Focus on sarcomas. Cancer Cell. 2002;2(3):175–8.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer WH, Spunt SL. Soft tissue sarcomas of childhood. Cancer Treat Rev. 2004;30(3):269–80.

    Article  CAS  PubMed  Google Scholar 

  3. Coffin CM, Dehner LP, O’Shea PA. Pediatric soft tissue sarcomas: a clinical, pathological and therapeutic approach. Baltimore, MD: Williams & Wilkins; 1997.

    Google Scholar 

  4. Rubin BP. Recent progress in the classification of soft tissue tumors: role of genetics and clinical implications. Curr Opin Oncol. 2001;13(4):256–60.

    Article  CAS  PubMed  Google Scholar 

  5. Coindre JM. Immunohistochemistry in the diagnosis of soft tissue tumours. Histopathology. 2003;43(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  6. Ushigome S, Machinami R, Sorensen PH. Ewing sarcoma/primitive neuroectodermal tumour (PNET). In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization classification of tumours: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 297–300.

    Google Scholar 

  7. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  8. Coffin CM, Fletcher JA. Infantile fibrosarcoma. In: Fletcher CD, Unni KK, Mertens F, editors. World Health Organization classification of tumours: tumours of soft tissue and bone. Lyon: World Health Organization; 2002. p. 98–100.

    Google Scholar 

  9. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3(9):685–94.

    Article  CAS  PubMed  Google Scholar 

  10. Sandberg AA, Bridge JA. Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet. 2000;123(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  11. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genet Cytogenet. 2002;133(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  12. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Desmoplastic small round-cell tumors. Cancer Genet Cytogenet. 2002;138(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331(5):294–9.

    Article  CAS  PubMed  Google Scholar 

  14. Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359(6391):162–5.

    Article  CAS  PubMed  Google Scholar 

  15. Zucman J, Delattre O, Desmaze C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer. 1992;5(4):271–7.

    Article  CAS  PubMed  Google Scholar 

  16. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5(3):230–5.

    Article  CAS  PubMed  Google Scholar 

  17. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994;54(11):2869–72.

    CAS  PubMed  Google Scholar 

  18. Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;3(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  19. Parham DM, Barr FG. Alveolar rhabdomyosarcoma. In: Fletcher CD, Unni KK, Mertens F, editors. World Health Organization classification of tumours: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 150–2.

    Google Scholar 

  20. Squire JA, Pei J, Marrano P, et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003;38(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  21. Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 2005;65(5):1748–54.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen TO. Microarray analysis of sarcomas. Adv Anat Pathol. 2006;13(4):166–73.

    Article  CAS  PubMed  Google Scholar 

  23. Selvarajah S, Yoshimoto M, Prasad M, et al. Characterization of trisomy 8 in pediatric undifferentiated sarcomas using advanced molecular cytogenetic techniques. Cancer Genet Cytogenet. 2007;174(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  24. Tarkkanen M, Larramendy ML, Bohling T, et al. Malignant fibrous histiocytoma of bone: analysis of genomic imbalances by comparative genomic hybridisation and C-MYC expression by immunohistochemistry. Eur J Cancer. 2006;42(8):1172–80.

    Article  CAS  PubMed  Google Scholar 

  25. Morrison C, Radmacher M, Mohammed N, et al. MYC amplification and polysomy 8 in chondrosarcoma: array comparative genomic hybridization, fluorescent in situ hybridization, and association with outcome. J Clin Oncol. 2005;23(36):9369–76.

    Article  CAS  PubMed  Google Scholar 

  26. Gatter KM, Olson S, Lawce H, Rader AE. Trisomy 8 as the sole cytogenetic abnormality in a case of extraskeletal mesenchymal chondrosarcoma. Cancer Genet Cytogenet. 2005;159(2):151–4.

    Article  CAS  PubMed  Google Scholar 

  27. Tsokos M, Alaggio RD, Dehner LP, Dickman PS. Ewing sarcoma/peripheral primitive neuroectodermal tumor and related tumors. Pediatr Dev Pathol. 2012;15(1 Suppl):108–26.

    Article  PubMed  Google Scholar 

  28. Romeo S, Dei Tos AP. Soft tissue tumors associated with EWSR1 translocation. Virchows Arch. 2010;456(2):219–34.

    Article  CAS  PubMed  Google Scholar 

  29. Kempson RL, Fletcher CDM, Evans HL, Hendrickson MR, Sibley RK. Tumors of the soft tissues. 3rd ed. Washington, DC: Armed Forces Institute of Pathology; 2001.

    Google Scholar 

  30. Goodfellow PN, Pym B, Pritchard C, et al. MIC2: a human pseudoautosomal gene. Philos Trans R Soc Lond B Biol Sci. 1988;322(1208):145–54.

    Article  CAS  PubMed  Google Scholar 

  31. Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol. 1991;139(2):317–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 4th ed. St. Louis, MO: Mosby; 2001.

    Google Scholar 

  33. Ozdemirli M, Fanburg-Smith JC, Hartmann DP, et al. Precursor B-lymphoblastic lymphoma presenting as a solitary bone tumor and mimicking Ewing’s sarcoma: a report of four cases and review of the literature. Am J Surg Pathol. 1998;22(7):795–804.

    Article  CAS  PubMed  Google Scholar 

  34. Granter SR, Renshaw AA, Fletcher CD, Bhan AK, Rosenberg AE. CD99 reactivity in mesenchymal chondrosarcoma. Hum Pathol. 1996;27(12):1273–6.

    Article  CAS  PubMed  Google Scholar 

  35. Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26(11):1434–40.

    Article  PubMed  Google Scholar 

  36. Mackintosh C, Madoz-Gurpide J, Ordonez JL, Osuna D, Herrero-Martin D. The molecular pathogenesis of Ewing’s sarcoma. Cancer Biol Ther. 2010;9(9):655–67.

    Article  CAS  PubMed  Google Scholar 

  37. Aurias A, Rimbaut C, Buffe D, Dubousset J, Mazabraud A. Chromosomal translocations in Ewing’s sarcoma. N Engl J Med. 1983;309(8):496–8.

    Google Scholar 

  38. Jeon IS, Davis JN, Braun BS, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10(6):1229–34.

    CAS  PubMed  Google Scholar 

  39. Kaneko Y, Yoshida K, Handa M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer. 1996;15(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  40. Peter M, Couturier J, Pacquement H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14(10):1159–64.

    Article  CAS  PubMed  Google Scholar 

  41. May WA, Gishizky ML, Lessnick SL, et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993;90(12):5752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. May WA, Lessnick SL, Braun BS, et al. The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13(12):7393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zucman J, Melot T, Desmaze C, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 1993;12(12):4481–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sankar S, Lessnick SL. Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 2011;204(7):351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997;99(2):239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lambert G, Bertrand JR, Fattal E, et al. EWS fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun. 2000;279(2):401–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65(19):8984–92.

    Article  CAS  PubMed  Google Scholar 

  48. de Alava E, Kawai A, Healey JH, et al. EWS-Fli-1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 1998;16(4):1248–55.

    CAS  PubMed  Google Scholar 

  49. van Doorninck JA, Ji L, Schaub B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2010;28(12):1989–94.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fanburg-Smith JC, Dal CP. Angiomatoid fibrous histiocytoma. In: Fletcher CD, Unni KK, Mertens F, editors. World Health Organization classification of tumours: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 194–5.

    Google Scholar 

  51. Thway K. Angiomatoid fibrous histiocytoma: a review with recent genetic findings. Arch Pathol Lab Med. 2008;132(2):273–7.

    PubMed  Google Scholar 

  52. Kay S. Angiomatoid malignant fibrous histiocytoma. Report of two cases with ultrastructural observations of one case. Arch Pathol Lab Med. 1985;109(10):934–7.

    CAS  PubMed  Google Scholar 

  53. Wegmann W, Heitz PU. Angiomatoid malignant fibrous histiocytoma. Evidence for the histiocytic origin of tumor cells. Virchows Arch A Pathol Anat Histopathol. 1985;406(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  54. Shao L, Singh V, Cooley L. Angiomatoid fibrous histiocytoma with t(2;22)(q33;q12.2) and EWSR1 gene rearrangement. Pediatr Dev Pathol. 2009;12(2):143–6.

    Article  PubMed  Google Scholar 

  55. Law WJ, Cann KL, Hicks GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic. 2006;5(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  56. Rossi S, Szuhai K, Ijszenga M, et al. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res. 2007;13(24):7322–8.

    Article  CAS  PubMed  Google Scholar 

  57. Antonescu CR, Gerald W. Desmoplastic small round cell tumour. In: Fletcher CD, Unni KK, Mertens F, editors. Pathology and genetics: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 216–8.

    Google Scholar 

  58. Syed S, Haque AK, Hawkins HK, Sorensen PH, Cowan DF. Desmoplastic small round cell tumor of the lung. Arch Pathol Lab Med. 2002;126(10):1226–8.

    PubMed  Google Scholar 

  59. Cummings OW, Ulbright TM, Young RH, Dei Tos AP, Fletcher CD, Hull MT. Desmoplastic small round cell tumors of the paratesticular region. A report of six cases. Am J Surg Pathol. 1997;21(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  60. Young RH, Eichhorn JH, Dickersin GR, Scully RE. Ovarian involvement by the intra-abdominal desmoplastic small round cell tumor with divergent differentiation: a report of three cases. Hum Pathol. 1992;23(4):454–64.

    Article  CAS  PubMed  Google Scholar 

  61. Adsay V, Cheng J, Athanasian E, Gerald W, Rosai J. Primary desmoplastic small cell tumor of soft tissues and bone of the hand. Am J Surg Pathol. 1999;23(11):1408–13.

    Article  CAS  PubMed  Google Scholar 

  62. Murphy A, Stallings RL, Howard J, et al. Primary desmoplastic small round cell tumor of bone: report of a case with cytogenetic confirmation. Cancer Genet Cytogenet. 2005;156(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  63. Chang F. Desmoplastic small round cell tumors: cytologic, histologic, and immunohistochemical features. Arch Pathol Lab Med. 2006;130(5):728–32.

    PubMed  Google Scholar 

  64. Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16(4):411–6.

    Article  CAS  PubMed  Google Scholar 

  65. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994;54(11):2837–40.

    CAS  PubMed  Google Scholar 

  66. Murphy AJ, Bishop K, Pereira C, et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum Pathol. 2008;39(12):1763–70.

    Article  CAS  PubMed  Google Scholar 

  67. Lee SB, Kolquist KA, Nichols K, et al. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet. 1997;17(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  68. Gerald WL, Haber DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol. 2005;15(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  69. Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P. Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996;12(3):489–94.

    CAS  PubMed  Google Scholar 

  70. Panagopoulos I, Mertens F, Isaksson M, et al. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2002;35(4):340–52.

    Article  CAS  PubMed  Google Scholar 

  71. Rekhi B, Sable M, Jambhekar NA. Histopathological, immunohistochemical and molecular spectrum of myoepithelial tumours of soft tissues. Virchows Arch. 2012;461(6):687–97.

    Article  CAS  PubMed  Google Scholar 

  72. Antonescu CR, Zhang L, Chang NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49(12):1114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brandal P, Panagopoulos I, Bjerkehagen B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer. 2008;47(7):558–64.

    Article  CAS  PubMed  Google Scholar 

  74. Flucke U, Mentzel T, Verdijk MA, et al. EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report. Hum Pathol. 2012;43(5):764–8.

    Article  PubMed  Google Scholar 

  75. Coffin CM, Alaggio R. Fibroblastic and myofibroblastic tumors in children and adolescents. Pediatr Dev Pathol. 2012;15(1 Suppl):127–80.

    Article  PubMed  Google Scholar 

  76. Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58(22):5046–8.

    CAS  PubMed  Google Scholar 

  77. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.

    Article  CAS  PubMed  Google Scholar 

  78. Fisher C. Soft tissue sarcomas with non-EWS translocations: molecular genetic features and pathologic and clinical correlations. Virchows Arch. 2010;456(2):153–66.

    Article  PubMed  Google Scholar 

  79. Lannon CL, Sorensen PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol. 2005;15(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  80. Rubin BP, Chen CJ, Morgan TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    Article  CAS  PubMed  Google Scholar 

  82. Eguchi M, Eguchi-Ishimae M, Tojo A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood. 1999;93(4):1355–63.

    CAS  PubMed  Google Scholar 

  83. Somers GR, Shago M, Zielenska M, Chan HS, Ngan BY. Primary subcutaneous primitive neuroectodermal tumor with aggressive behavior and an unusual karyotype: case report. Pediatr Dev Pathol. 2004;7(5):538–45.

    Article  PubMed  Google Scholar 

  84. Yoshimoto M, Graham C, Chilton-MacNeill S, et al. Detailed cytogenetic and array analysis of pediatric primitive sarcomas reveals a recurrent CIC-DUX4 fusion gene event. Cancer Genet Cytogenet. 2009;195(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  85. Kawamura-Saito M, Yamazaki Y, Kaneko K, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.

    Article  CAS  PubMed  Google Scholar 

  86. Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Graham C, Chilton-MacNeill S, Zielenska M, Somers GR. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43(2):180–9.

    Article  CAS  PubMed  Google Scholar 

  88. Lee CJ, Chan WI, Cheung M, et al. CIC, a member of a novel subfamily of the HMG-box superfamily, is transiently expressed in developing granule neurons. Brain Res Mol Brain Res. 2002;106(1–2):151–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gabriels J, Beckers MC, Ding H, et al. Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene. 1999;236(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  90. Parham DM, Barr FG. Embryonal rhabdomyosarcoma. In: Fletcher CDM, Unni KK, Mertens F, editors. World health classification of tumours: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 146–9.

    Google Scholar 

  91. Newton Jr WA, Soule EH, Hamoudi AB, et al. Histopathology of childhood sarcomas, Intergroup Rhabdomyosarcoma Studies I and II: clinicopathologic correlation. J Clin Oncol. 1988;6(1):67–75.

    PubMed  Google Scholar 

  92. Parham DM, Alaggio R, Coffin CM. Myogenic tumors in children and adolescents. Pediatr Dev Pathol. 2012;15(1 Suppl):211–38.

    Article  PubMed  Google Scholar 

  93. Qualman SJ, Coffin CM, Newton WA, et al. Intergroup Rhabdomyosarcoma Study: update for pathologists. Pediatr Dev Pathol. 1998;1(6):550–61.

    Article  CAS  PubMed  Google Scholar 

  94. Kodet R, Newton Jr WA, Hamoudi AB, Asmar L, Jacobs DL, Maurer HM. Childhood rhabdomyosarcoma with anaplastic (pleomorphic) features. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol. 1993;17(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  95. Mentzel T, Katenkamp D. Sclerosing, pseudovascular rhabdomyosarcoma in adults. Clinicopathological and immunohistochemical analysis of three cases. Virchows Arch. 2000;436(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  96. Croes R, Debiec-Rychter M, Cokelaere K, De Vos R, Hagemeijer A, Sciot R. Adult sclerosing rhabdomyosarcoma: cytogenetic link with embryonal rhabdomyosarcoma. Virchows Arch. 2005;446(1):64–7.

    Article  PubMed  Google Scholar 

  97. Cavazzana AO, Schmidt D, Ninfo V, et al. Spindle cell rhabdomyosarcoma. A prognostically favorable variant of rhabdomyosarcoma. Am J Surg Pathol. 1992;16(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  98. Qualman S, Lynch J, Bridge J, et al. Prevalence and clinical impact of anaplasia in childhood rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Cancer. 2008;113(11):3242–7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bridge JA, Liu J, Qualman SJ, et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer. 2002;33(3):310–21.

    Article  CAS  PubMed  Google Scholar 

  100. Paulson V, Chandler G, Rakheja D, et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer. 2011;50(6):397–408.

    Article  CAS  PubMed  Google Scholar 

  101. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavenee WK. Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature. 1985;316(6026):330–4.

    Article  CAS  PubMed  Google Scholar 

  102. Scrable HJ, Witte DP, Lampkin BC, Cavenee WK. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature. 1987;329(6140):645–7.

    Article  CAS  PubMed  Google Scholar 

  103. Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(3):343–54.

    Article  CAS  PubMed  Google Scholar 

  104. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28(1):20–47.

    Article  CAS  PubMed  Google Scholar 

  105. El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH, Helman LJ. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1990;1(7):325–31.

    CAS  PubMed  Google Scholar 

  106. Makawita S, Ho M, Durbin AD, Thorner PS, Malkin D, Somers GR. Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol. 2009;12(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  107. Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther. 2002;1(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  108. Bridge JA, Cushman-Vokoun AM. Molecular diagnostics of soft tissue tumors. Arch Pathol Lab Med. 2011;135(5):588–601.

    CAS  PubMed  Google Scholar 

  109. Igbokwe A, Lopez-Terrada DH. Molecular testing of solid tumors. Arch Pathol Lab Med. 2011;135(1):67–82.

    CAS  PubMed  Google Scholar 

  110. Shaffer LG, Bejjani BA. A cytogeneticist’s perspective on genomic microarrays. Hum Reprod Update. 2004;10(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  111. Imataka G, Arisaka O. Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys. 2012;62(1):13–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ross J, Davies S. Screening for neuroblastoma: progress and pitfalls. Cancer Epidemiol Biomarkers Prev. 1999;8:189–94.

    CAS  PubMed  Google Scholar 

  113. Maris J, Matthay K. Molecular biology of neuroblastoma. J Clin Oncol. 1999;17:2264–79.

    CAS  PubMed  Google Scholar 

  114. Maris J, Hogarty M, Bagatell R, Cohn S. Neuroblastoma. Lancet. 2007;369:2106–20.

    Article  CAS  PubMed  Google Scholar 

  115. London WB, Castleberry RP, Matthay KK, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol. 2005;23(27):6459–65.

    Article  CAS  PubMed  Google Scholar 

  116. Riley R, Heney D, Jones D, et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin Cancer Res. 2004;10:4–12.

    Article  CAS  PubMed  Google Scholar 

  117. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362(23):2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47(4):561–71.

    Article  PubMed  Google Scholar 

  120. Schmidt ML, Lal A, Seeger RC, et al. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol. 2005;23(27):6474–80.

    Article  CAS  PubMed  Google Scholar 

  121. Brodeur G, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    CAS  PubMed  Google Scholar 

  122. Evans AE, Silber JH, Shpilsky A, D’Angio GJ. Successful management of low-stage neuroblastoma without adjuvant therapies: a comparison of two decades, 1972 through 1981 and 1982 through 1992, in a single institution. J Clin Oncol. 1996;14(9):2504–10.

    CAS  PubMed  Google Scholar 

  123. Matthay KK, Sather HN, Seeger RC, Haase GM, Hammond GD. Excellent outcome of stage II neuroblastoma is independent of residual disease and radiation therapy. J Clin Oncol. 1989;7(2):236–44.

    CAS  PubMed  Google Scholar 

  124. Matthay KK, Perez C, Seeger RC, et al. Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children’s Cancer Group study. J Clin Oncol. 1998;16(4):1256–64.

    CAS  PubMed  Google Scholar 

  125. West DC, Shamberger RC, Macklis RM, et al. Stage III neuroblastoma over 1 year of age at diagnosis: improved survival with intensive multimodality therapy including multiple alkylating agents. J Clin Oncol. 1993;11(1):84–90.

    CAS  PubMed  Google Scholar 

  126. Matthay K, Villablanca J, Seeger R, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341:1165–73.

    Article  CAS  PubMed  Google Scholar 

  127. Zage PE, Kletzel M, Murray K, et al. Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(6):747–53.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Taggart DR, London WB, Schmidt ML, et al. Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J Clin Oncol. 2011;29(33):4358–64.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Simon T, Hero B, Benz-Bohm G, von Schweinitz D, Berthold F. Review of image defined risk factors in localized neuroblastoma patients: results of the GPOH NB97 trial. Pediatr Blood Cancer. 2008;50(5):965–9.

    Article  PubMed  Google Scholar 

  131. Krishnan C, Higgins JP, West RB, Natkunam Y, Heerema-McKenney A, Arber DA. Microtubule-associated protein-2 is a sensitive marker of primary and metastatic neuroblastoma. Am J Surg Pathol. 2009;33(11):1695–704.

    Article  PubMed  Google Scholar 

  132. Joshi V. Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (modification of Shimada classification). Pediatr Dev Pathol. 2000;3:184–99.

    Article  CAS  PubMed  Google Scholar 

  133. Shimada H, Chatten J, Newton WJ, et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst. 1984;73:405–16.

    CAS  PubMed  Google Scholar 

  134. Shimada H, Ambros IM, Dehner LP, et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86(2):364–72.

    Article  CAS  PubMed  Google Scholar 

  135. Shimada H, Umehara S, Monobe Y, et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer. 2001;92(9):2451–61.

    Article  CAS  PubMed  Google Scholar 

  136. Peuchmaur M, d’Amore ES, Joshi VV, et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003;98(10):2274–81.

    Article  PubMed  Google Scholar 

  137. Umehara S, Nakagawa A, Matthay KK, et al. Histopathology defines prognostic subsets of ganglioneuroblastoma, nodular. Cancer. 2000;89(5):1150–61.

    Article  CAS  PubMed  Google Scholar 

  138. Brodeur GM, Minturn JE, Ho R, et al. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 2009;15(10):3244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Light JE, Koyama H, Minturn JE, et al. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer. 2012;59(2):226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nakagawara A, Arima-Nakagawara M, Scavarda N, Azar C, Canter A, Brodeur G. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328:847–54.

    Article  CAS  PubMed  Google Scholar 

  141. Minturn JE, Evans AE, Villablanca JG, et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol. 2011;68(4):1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mosse YP, Diskin SJ, Wasserman N, et al. Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosomes Cancer. 2007;46(10):936–49.

    Article  CAS  PubMed  Google Scholar 

  143. Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol. 2010;28(19):3122–30.

    Article  PubMed  Google Scholar 

  144. Li MM, Andersson HC. Clinical application of microarray-based molecular cytogenetics: an emerging new era of genomic medicine. J Pediatr. 2009;155(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  145. Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009;146(5):479–88.

    Article  CAS  PubMed  Google Scholar 

  146. Look A, Hayes F, Nitschke R, McWilliams N, Green A. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N Engl J Med. 1984;311:231–5.

    Article  CAS  PubMed  Google Scholar 

  147. Look A, Hayes F, Shuster J, et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol. 1991;9:581–91.

    CAS  PubMed  Google Scholar 

  148. Ambros PF, Ambros IM, Brodeur GM, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100(9):1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schneiderman J, London W, Brodeur G, Castleberry R, Look A, Cohn S. Clinical significance of MYCN amplification and ploidy in favorable-stage neuroblastoma: a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:913–8.

    Article  PubMed  Google Scholar 

  150. Seeger R, Brodeur G, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313:1111–6.

    Article  CAS  PubMed  Google Scholar 

  151. Brodeur G, Seeger R, Schwab M, Varmus H, Bishop J. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.

    Article  CAS  PubMed  Google Scholar 

  152. Katzenstein H, Bowman L, Brodeur G, et al. The prognostic significance of age, MYCN oncogene amplification, tumor cell ploidy, and histology in 110 infants with stage D(S) neuroblastoma: The Pediatric Oncology Group experience. J Clin Oncol. 1998;16:2007–17.

    CAS  PubMed  Google Scholar 

  153. Bagatell R, Beck-Popovic M, London WB, et al. Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol. 2009;27(3):365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rubie H, Hartmann O, Michon J, et al. N-Myc gene amplification is a major prognostic factor in localized neuroblastoma: results of the French NBL 90 study. J Clin Oncol. 1997;15:1171–82.

    CAS  PubMed  Google Scholar 

  156. Boerner S, Squire J, Thorner P, McKenna G, Zielenska M. Assessment of MYCN amplification in neuroblastoma biopsies by differential polymerase chain reaction. Pediatr Pathol. 1994;14:823–32.

    Article  CAS  PubMed  Google Scholar 

  157. Amler L, Schwab M. Amplified N-Myc in human neuroblastoma cells is often arranged as clustered tandem repeats of differently recombined DNA. Mol Cell Biol. 1989;9:4903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res. 2005;302(2):233–43.

    Article  CAS  PubMed  Google Scholar 

  159. Moreau LA, McGrady P, London WB, et al. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children’s Oncology Group study. Clin Cancer Res. 2006;12(19):5693–7.

    Article  CAS  PubMed  Google Scholar 

  160. Shapiro D, Valentine M, Rowe S, et al. Detection of MYCN gene amplification by fluorescence in situ hybridization. Diagnostic utility for neuroblastoma. Am J Pathol. 1993;142:1339–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Cohen P, Seeger R, Triche T, Israel M. Detection of MYCN gene expression in neuroblastoma tumours by in situ hybridization. Am J Pathol. 1988;131:391–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Taylor C, McGuckin A, Bown N, et al. Rapid detection of prognostic genetic factors in neuroblastoma using fluorescence in situ hybridisation on tumour imprints and bone marrow smears. Br J Cancer. 1994;69:445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Misra D, Dickman P, Yunis E. Fluorescence in situ hybridization (FISH) detection of MYCN oncogene amplification in neuroblastoma using paraffin-embedded tissues. Diagn Mol Pathol. 1995;4:128–35.

    Article  CAS  PubMed  Google Scholar 

  164. Theissen J, Boensch M, Spitz R, et al. Heterogeneity of the MYCN oncogene in neuroblastoma. Clin Cancer Res. 2009;15(6):2085–90.

    Article  CAS  PubMed  Google Scholar 

  165. Thorner P, Ho M, Chilton-MacNeill S, Zielenska M. Use of chromogenic in situ hybridization to identify MYCN gene copy number in neuroblastoma using routine tissue sections. Am J Surg Pathol. 2006;30:635–42.

    Article  PubMed  Google Scholar 

  166. Cohn S, London W, Huang D, et al. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol. 2001;18:3604–13.

    Google Scholar 

  167. Valentijn LJ, Koster J, Haneveld F, et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci U S A. 2012;109(47):19190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Alaminos M, Mora J, Cheung N-K, et al. Genome-wide analysis of gene expression associated with MYCN in human neuroblastoma. Cancer Res. 2003;63:4538–46.

    CAS  PubMed  Google Scholar 

  169. Chen Q, Bilke S, Wei J, et al. CDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics. 2004;5:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Hiyama E, Hiyama K, Yamaoka H, Sueda T, Reynolds C, Yokoyama T. Expression profiling of favorable and unfavorable neuroblastomas. Pediatr Surg Int. 2004;20:33–8.

    Article  PubMed  Google Scholar 

  171. Krasnoselsky A, Whiteford C, Wei J, et al. Altered expression of cell cycle genes distinguishes aggressive neuroblastoma. Oncogene. 2005;24:1533–41.

    Article  CAS  PubMed  Google Scholar 

  172. Ohira M, Oba S, Nakamura Y, Hirata T, Ishii S, Nakagawara A. A review of DNA microarray analysis of human neuroblastomas. Cancer Lett. 2005;228:5–11.

    Article  CAS  PubMed  Google Scholar 

  173. Caron H, van Sluis P, van Hoeve M, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-MYC amplification. Nat Genet. 1993;4:187–90.

    Article  CAS  PubMed  Google Scholar 

  174. White P, Maris J, Beltinger C, et al. A region of consistent deletion in neuroblastoma maps to within 1p36.2-3. Proc Natl Acad Sci U S A. 1995;92:5520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Caron H, Peter M, van Sluis P, et al. Evidence for two tumor suppressor loci on chromosomal bands 1p35-1p36 involved in neuroblastoma: one probably imprinted, another associated with N-myc amplification. Hum Mol Genet. 1995;4:535–9.

    Article  CAS  PubMed  Google Scholar 

  176. Fong C, Dracopoli N, White P, et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci U S A. 1989;86:3753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Maris J, Weiss M, Guo C, et al. Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: A Children’s Cancer Group study. J Clin Oncol. 2000;18:1888–99.

    CAS  PubMed  Google Scholar 

  178. Janoueix-Lerosey I, Novikov E, Monteiro M, et al. Gene expression profiling of 1p35–36 genes in neuroblastoma. Oncogene. 2004;23:5912–22.

    Article  CAS  PubMed  Google Scholar 

  179. Fransson S, Martinsson T, Ejeskär K. Neuroblastoma tumors with favorable and unfavorable outcomes: significant differences in mRNA expression of genes mapped at 1p36.2. Genes Chromosomes Cancer. 2007;46:45–52.

    Article  CAS  PubMed  Google Scholar 

  180. Okawa ER, Gotoh T, Manne J, et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene. 2008;27(6):803–10.

    Article  CAS  PubMed  Google Scholar 

  181. Fujita T, Igarashi J, Okawa E, et al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst. 2008;100:940–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Garcia I, Mayol G, Rodriguez E, et al. Expression of the neuron-specific protein CHD5 is an independent marker of outcome in neuroblastoma. Mol Cancer. 2010;9:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Luttikhuis M, Powell J, Rees S, et al. Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br J Cancer. 2001;17:531–7.

    Article  Google Scholar 

  184. Guo C, White P, Weiss M, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18:4948–57.

    Article  CAS  PubMed  Google Scholar 

  185. Bown N, Cotterill S, Lastowksa M, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med. 1999;340:1954–61.

    Article  CAS  PubMed  Google Scholar 

  186. Lastowska M, Roberts P, Pearson A, Lewis I, Wolstenholme J, Bown N. Promiscuous translocations of chromosome arm 17q in human neuroblastomas. Genes Chromosomes Cancer. 1997;19:143–9.

    Article  CAS  PubMed  Google Scholar 

  187. Godfried MB, Veenstra M, v Sluis P, et al. The N-myc and c-myc downstream pathways include the chromosome 17q genes nm23-H1 and nm23-H2. Oncogene. 2002;21(13):2097–101.

    Article  CAS  PubMed  Google Scholar 

  188. Islam A, Kageyama H, Takada N, et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene. 2000;19:617–23.

    Article  CAS  PubMed  Google Scholar 

  189. Saito-Ohara F, Imoto I, Inoue J, et al. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res. 2003;63:1876–83.

    CAS  PubMed  Google Scholar 

  190. Azarova AM, Gautam G, George RE. Emerging importance of ALK in neuroblastoma. Semin Cancer Biol. 2011;21(4):267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Janoueix-Lerosey I, Lequin D, Brugieres L, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455(7215):967–70.

    Article  CAS  PubMed  Google Scholar 

  192. Mosse YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. de Pontual L, Kettaneh D, Gordon CT, et al. Germline gain-of-function mutations of ALK disrupt central nervous system development. Hum Mutat. 2011;32(3):272–6.

    Article  PubMed  Google Scholar 

  194. Martinsson T, Eriksson T, Abrahamsson J, et al. Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy. Cancer Res. 2011;71(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  195. Berry T, Luther W, Bhatnagar N, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22(1):117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Heukamp LC, Thor T, Schramm A, et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med. 2012;4(141):141ra91.

    Article  PubMed  CAS  Google Scholar 

  197. Zhu S, Lee JS, Guo F, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell. 2012;21(3):362–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Duijkers FA, Gaal J, Meijerink JP, et al. High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. Am J Pathol. 2012;180(3):1223–31.

    Article  PubMed  Google Scholar 

  199. Schulte JH, Bachmann HS, Brockmeyer B, et al. High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res. 2011;17(15):5082–92.

    Article  CAS  PubMed  Google Scholar 

  200. Mosse YP, Laudenslager M, Khazi D, et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet. 2004;75(4):727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Raabe EH, Laudenslager M, Winter C, et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene. 2008;27(4):469–76.

    Article  CAS  PubMed  Google Scholar 

  202. Trochet D, Bourdeaut F, Janoueix-Lerosey I, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet. 2004;74:761–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Serra A, Haberle B, Konig IR, et al. Rare occurrence of PHOX2b mutations in sporadic neuroblastomas. J Pediatr Hematol Oncol. 2008;30(10):728–32.

    Article  CAS  PubMed  Google Scholar 

  204. Bentires-Alj M, Paez JG, David FS, et al. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64(24):8816–20.

    Article  CAS  PubMed  Google Scholar 

  205. Mutesa L, Pierquin G, Janin N, et al. Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors. Cancer Genet Cytogenet. 2008;182(1):40–2.

    Article  CAS  PubMed  Google Scholar 

  206. Cheung NK, Zhang J, Lu C, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA. 2012;307(10):1062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Molenaar JJ, Domingo-Fernandez R, Ebus ME, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet. 2012;44(11):1199–206.

    Article  CAS  PubMed  Google Scholar 

  208. Sausen M, Leary RJ, Jones S, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet. 2013;45(1):12–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Carr-Wilkinson J, O’Toole K, Wood KM, et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin Cancer Res. 2010;16(4):1108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Tweddle DA, Malcolm AJ, Bown N, Pearson AD, Lunec J. Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res. 2001;61(1):8–13.

    CAS  PubMed  Google Scholar 

  211. Onel K, Cordon-Cardo C. MDM2 and prognosis. Mol Cancer Res. 2004;2(1):1–8.

    CAS  PubMed  Google Scholar 

  212. Slack A, Chen Z, Tonelli R, et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci. 2005;102:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Asgharzadeh S, Pique-Regi R, Sposto R, et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst. 2006;98:1193–203.

    Article  CAS  PubMed  Google Scholar 

  214. Chen QR, Song YK, Yu LR, et al. Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J Proteome Res. 2010;9(1):373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hiyama E, Hiyama K, Nishiyama M, Reynolds C, Shay J, Yokoyama T. Differential gene expression profiles between neuroblastomas with high telomerase activity and low telomerase activity. J Pediatr Surg. 2003;38:1730–4.

    Article  PubMed  Google Scholar 

  216. Krause A, Combaret V, Iacono I, et al. Genome-wide analysis of gene expression in neuroblastomas detected by mass screening. Cancer Lett. 2005;225:111–20.

    Article  CAS  PubMed  Google Scholar 

  217. Lastowska M, Viprey V, Santibanez-Koref M, et al. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene. 2007;26(53):7432–44.

    Article  CAS  PubMed  Google Scholar 

  218. McArdle L, McDermott M, Purcell R, et al. Oligonucleotide microarray analysis of gene expression in neuroblastoma displaying loss of chromosome 11q. Carcinogenesis. 2004;25:1599–609.

    Article  CAS  PubMed  Google Scholar 

  219. Nevo I, Oberthuer A, Botzer E, et al. Gene-expression-based analysis of local and metastatic neuroblastoma variants reveals a set of genes associated with tumor progression in neuroblastoma patients. Int J Cancer. 2009;126(7):1570–81.

    Google Scholar 

  220. Oberthuer A, Berthold F, Warnat P, et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol. 2006;24(31):5070–8.

    Article  CAS  PubMed  Google Scholar 

  221. Oberthuer A, Hero B, Berthold F, et al. Prognostic impact of gene expression-based classification for neuroblastoma. J Clin Oncol. 2010;28(21):3506–15.

    Article  PubMed  Google Scholar 

  222. Ohira M, Morohashi A, Inuzuka H, et al. Expression profiling and characterization of 4200 genes cloned from primary neuroblastomas: identification of 305 genes differentially expressed between favorable and unfavorable subsets. Oncogene. 2003;22:5525–36.

    Article  CAS  PubMed  Google Scholar 

  223. Ohira M, Oba S, Nakamura Y, et al. Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell. 2005;7:337–50.

    Article  CAS  PubMed  Google Scholar 

  224. Schramm A, Schulte JH, Klein-Hitpass L, et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene. 2005;24:7902–12.

    Article  CAS  PubMed  Google Scholar 

  225. Takita J, Ishii M, Tsutsumi S, et al. Gene expression profiling and identification of novel prognostic marker genes in neuroblastoma. Genes Chromosomes Cancer. 2004;40:120–32.

    Article  CAS  PubMed  Google Scholar 

  226. Wei J, Greer B, Westermann F, et al. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res. 2004;64:6883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.

    Article  CAS  PubMed  Google Scholar 

  229. Lin RJ, Lin YC, Chen J, et al. MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010;70(20):7841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bray I, Bryan K, Prenter S, et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One. 2009;4(11):e7850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 2012;10(10):1243–53.

    Article  CAS  PubMed  Google Scholar 

  232. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67(3):976–83.

    Article  CAS  PubMed  Google Scholar 

  233. De Preter K, Mestdagh P, Vermeulen J, et al. miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples. Clin Cancer Res. 2011;17(24):7684–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Maris JM, Mosse YP, Bradfield JP, et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med. 2008;358(24):2585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Capasso M, Devoto M, Hou C, et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet. 2009;41(6):718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Capasso M, Diskin SJ, Totaro F, et al. Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis. 2012;34(3):605–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Nguyen le B, Diskin SJ, Capasso M et al. Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genet. 2011;7:e1002026.

    Article  CAS  PubMed  Google Scholar 

  238. Wang K, Diskin SJ, Zhang H, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature. 2011;469(7329):216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bosse KR, Diskin SJ, Cole KA, et al. Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. Cancer Res. 2012;72(8):2068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yang Q, Kiernan CM, Tian Y, et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res. 2007;13(11):3191–7.

    Article  CAS  PubMed  Google Scholar 

  241. Abe M, Watanabe N, McDonell N, et al. Identification of genes targeted by CpG island methylator phenotype in neuroblastomas, and their possible integrative involvement in poor prognosis. Oncology. 2008;74(1–2):50–60.

    Article  CAS  PubMed  Google Scholar 

  242. Decock A, Ongenaert M, Hoebeeck J, et al. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers. Genome Biol. 2012;13(10):R95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gondek LP, Haddad AS, O’Keefe CL, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol. 2007;35(11):1728–38.

    Article  CAS  PubMed  Google Scholar 

  244. Wolf M, Korja M, Karhu R, et al. Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication. BMC Cancer. 2010;10:181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Mosse YP, Greshock J, Weber BL, Maris JM. Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett. 2005;228(1–2):83–90.

    Article  CAS  PubMed  Google Scholar 

  246. Scaruffi P, Coco S, Cifuentes F, et al. Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genet Cytogenet. 2007;177(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  247. Chen QR, Bilke S, Khan J. High-resolution cDNA microarray-based comparative genomic hybridization analysis in neuroblastoma. Cancer Lett. 2005;228(1–2):71–81.

    Article  CAS  PubMed  Google Scholar 

  248. West RB. Expression profiling in soft tissue sarcomas with emphasis on synovial sarcoma, gastrointestinal stromal tumor, and leiomyosarcoma. Adv Anat Pathol. 2010;17(5):366–73.

    Article  CAS  PubMed  Google Scholar 

  249. Allander SV, Illei PB, Chen Y, et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol. 2002;161(5):1587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Terry J, Saito T, Subramanian S, et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31(2):240–6.

    Article  PubMed  Google Scholar 

  251. Nielsen TO, West RB, Linn SC, et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet. 2002;359(9314):1301–7.

    Article  CAS  PubMed  Google Scholar 

  252. Kubista B, Klinglmueller F, Bilban M, et al. Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int Orthop. 2011;35(3):401–11.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Nakayama R, Mitani S, Nakagawa T, et al. Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type. Am J Surg Pathol. 2010;34(11):1599–607.

    PubMed  Google Scholar 

  254. McKinsey EL, Parrish JK, Irwin AE, et al. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene. 2011;30(49):4910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Prieur A, Tirode F, Cohen P, Delattre O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol. 2004;24(16):7275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–25.

    Article  CAS  PubMed  Google Scholar 

  257. Fortina P, Surrey S. Digital mRNA profiling. Nat Biotechnol. 2008;26(3):293–4.

    Article  CAS  PubMed  Google Scholar 

  258. Luina-Contreras A, Jackson S, Ladanyi M. Highly multiplexed detection of translocation fusion transcripts without amplification using the NanoString platform. In: [1901] United States and Canadian Association of Pathologists, 2010, Washington, DC; 2010.

    Google Scholar 

  259. Lira ME, Kim TM, Huang D, et al. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J Mol Diagn. 2013;15(1):51–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino R. Somers M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Somers, G.R., Thorner, P.S. (2014). Molecular Testing in Paediatric Tumours. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics