Skip to main content

Instability: Dynamic Loading Models

  • Chapter
Post-Traumatic Arthritis
  • 1163 Accesses

Abstract

Joint instability consistently leads to osteoarthritis. Instability represents excessive translation or rotation of the articulating structures causing articular stresses to be transmitted at abnormal rates and leading to an expanded footprint of joint contact. Excessive stress rates have been shown to be particularly damaging to cartilage in multiple isolated cartilage preparations. In this chapter, basic scientific evidence primarily generated from cadaveric macromechanical experiments, computational modeling, living-tissue preparations, and animal in vivo preparations are presented. Instability causes significant increases in contact stress rates which extrapolate into abnormal cartilage tissue strain. In vivo models demonstrate correspondence between instability and joint degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korkmaz A, Ciftdemir M, Ozcan M, Copuroglu C, Saridogan K. The analysis of the variables, affecting outcome in surgically treated tibia pilon fractured patients. Injury. 2013;44(10):1270–4.

    Article  PubMed  Google Scholar 

  2. Matta JM. Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am. 1996;78(11):1632–45.

    CAS  PubMed  Google Scholar 

  3. Matta JM. Operative treatment of acetabular fractures through the ilioinguinal approach: a 10-year perspective. J Orthop Trauma. 2006;20(1 Suppl):S20–9.

    PubMed  Google Scholar 

  4. Tannast M, Najibi S, Matta JM. Two to twenty-year survivorship of the hip in 810 patients with operatively treated acetabular fractures. J Bone Joint Surg Am. 2012;94(17):1559–67.

    Article  PubMed  Google Scholar 

  5. Fitzpatrick DC, Foels WS, Pedersen DR, Marsh JL, Saltzman CL, Brown TD. An articulated ankle external fixation system that can be aligned with the ankle axis. Iowa Orthop J. 1995;15:197–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Lansinger O, Bergman B, Korner L, Andersson GB. Tibial condylar fractures. A twenty-year follow-up. J Bone Joint Surg Am. 1986;68(1):13–9.

    CAS  PubMed  Google Scholar 

  7. Marsh JL, Bonar S, Nepola JV, Decoster TA, Hurwitz SR. Use of an articulated external fixator for fractures of the tibial plafond. J Bone Joint Surg Am. 1995;77(10):1498–509.

    CAS  PubMed  Google Scholar 

  8. Stevens DG, Beharry R, McKee MD, Waddell JP, Schemitsch EH. The long-term functional outcome of operatively treated tibial plateau fractures. J Orthop Trauma. 2001;15(5):312–20.

    Article  CAS  PubMed  Google Scholar 

  9. Delamarter RB, Hohl M, Hopp Jr E. Ligament injuries associated with tibial plateau fractures. Clin Orthop. 1990;250:226–33.

    PubMed  Google Scholar 

  10. Hall JA, Beuerlein MJ, McKee MD, Canadian Orthopaedic Trauma Society. Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures. Surgical technique. J Bone Joint Surg Am. 2009; 91 Suppl 2 Pt 1:74–88.

    Google Scholar 

  11. Honkonen SE. Indications for surgical treatment of tibial condyle fractures. Clin Orthop. 1994;302:199–205.

    PubMed  Google Scholar 

  12. Lubbeke A, Salvo D, Stern R, Hoffmeyer P, Holzer N, Assal M. Risk factors for post-traumatic osteoarthritis of the ankle: an eighteen year follow-up study. Int Orthop. 2012;36(7):1403–10.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Volpin G, Dowd GS, Stein H, Bentley G. Degenerative arthritis after intra-articular fractures of the knee. Long-term results. J Bone Joint Surg Br. 1990;72(4):634–8.

    CAS  PubMed  Google Scholar 

  14. Marti RK, Raaymakers EL, Nolte PA. Malunited ankle fractures. The late results of reconstruction. J Bone Joint Surg Br. 1990;72(4):709–13.

    CAS  PubMed  Google Scholar 

  15. Brown TD, Anderson DD, Nepola JV, Singerman RJ, Pedersen DR, Brand RA. Contact stress aberrations following imprecise reduction of simple tibial plateau fractures. J Orthop Res. 1988;6(6):851–62.

    Article  CAS  PubMed  Google Scholar 

  16. Lefkoe TP, Walsh WR, Anastasatos J, Ehrlich MG, Barrach HJ. Remodeling of articular step-offs. Is osteoarthrosis dependent on defect size? Clin Orthop. 1995;314:253–65.

    PubMed  Google Scholar 

  17. Nelson BH, Anderson DD, Brand RA, Brown TD. Effect of osteochondral defects on articular cartilage. Contact pressures studied in dog knees. Acta Orthop Scand. 1988;59(5):574–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980;102(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  19. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res. 1994;12(4):474–84.

    Article  CAS  PubMed  Google Scholar 

  20. Oloyede A, Flachsmann R, Broom ND. The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tissue Res. 1992;27(4):211–24.

    Article  CAS  PubMed  Google Scholar 

  21. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997;15(2):181–8.

    Article  PubMed  Google Scholar 

  22. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 1989;7(5):619–36.

    Article  CAS  PubMed  Google Scholar 

  23. Atkinson TS, Haut RC, Altiero NJ. Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J Biomech Eng. 1998;120(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res. 2001;19(6):1140–6.

    Article  CAS  PubMed  Google Scholar 

  25. Lewis JL, Deloria LB, Oyen-Tiesma M, Thompson Jr RC, Ericson M, Oegema Jr TR. Cell death after cartilage impact occurs around matrix cracks. J Orthop Res. 2003;21(5):881–7.

    Article  PubMed  Google Scholar 

  26. McKinley TO, Tochigi Y, Rudert MJ, Brown TD. Instability-associated changes in contact stress and contact stress rates near a step-off incongruity. J Bone Joint Surg Am. 2008;90(2):375–83.

    Article  PubMed Central  PubMed  Google Scholar 

  27. McKinley TO, Tochigi Y, Rudert MJ, Brown TD. The effect of incongruity and instability on contact stress directional gradients in human cadaveric ankles. Osteoarthritis Cartilage. 2008;16(11):1363–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Goreham-Voss CM, McKinley TO, Brown TD. A finite element exploration of cartilage stress near an articular incongruity during unstable motion. J Biomech. 2007;40(15):3438–47.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Heiner AD, McKinley TO, Ramakrishnan PS, Bierman JF, Martin JA. Normal versus abnormal loading of cartilage explants. San Antonio, TX: Orthopaedic Research Society; 2013.

    Google Scholar 

  30. Dedrick DK, Goldstein SA, Brandt KD, O’Connor BL, Goulet RW, Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993;36(10):1460–7.

    Article  CAS  PubMed  Google Scholar 

  31. Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartilage. 1999;7(1):2–14.

    Article  CAS  PubMed  Google Scholar 

  32. Heiner AD, Rudert MJ, McKinley TO, Fredericks DC, Bobst JA, Tochigi Y. In vivo measurement of translational stiffness of rabbit knees. J Biomech. 2007;40(10):2313–7.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tochigi Y, Vaseenon T, Heiner AD, Fredericks DC, Martin JA, Rudert MJ, Hillis SL, Brown TD, McKinley TO. Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am. 2011;93(7):640–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Vaseenon T, Tochigi Y, Heiner AD, Goetz JE, Baer TE, Fredericks DC, Martin JA, Rudert MJ, Hillis SL, Brown TD, et al. Organ-level histological and biomechanical responses from localized osteoarticular injury in the rabbit knee. J Orthop Res. 2011;29(3):340–6.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Arunakul M, Tochigi Y, Goetz JE, Diestelmeier BW, Heiner AD, Rudert J, Fredericks DC, Brown TD, McKinley TO. Replication of chronic abnormal cartilage loading by medial meniscus destabilization for modeling osteoarthritis in the rabbit knee in vivo. J Orthop Res. 2013;31(10):1555–60.

    Article  PubMed  Google Scholar 

  36. Allen KD, Mata BA, Gabr MA, Huebner JL, Adams Jr SB, Kraus VB, Schmitt DO, Setton LA. Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res Ther. 2012;14(2):R78.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Frank CB, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, O’Brien EJ, Shrive NG. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J Orthop Res. 2012;30(3):384–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd McKinley M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKinley, T. (2015). Instability: Dynamic Loading Models. In: Olson, MD, S., Guilak, PhD, F. (eds) Post-Traumatic Arthritis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7606-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7606-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7605-5

  • Online ISBN: 978-1-4899-7606-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics