Skip to main content

The Response of the Subchondral Bone to Injury

  • Chapter
Post-Traumatic Arthritis
  • 1195 Accesses

Abstract

Traumatic joint injury represents a major risk factor for the subsequent development of post-traumatic osteoarthritis (PTOA). Importantly, all of the joint tissues, including the articular cartilage, ligaments, tendons, synovium, capsule, and periarticular bone, are susceptible to mechanical injury and damage. A common initiating feature of the injuries is the acute application of mechanical force or impact to the joint tissues. Low-energy impact may not directly disrupt the integrity of the extracellular matrices of the joint tissues but may instead induce a cascade of events that modulate the activities and function of the resident cell types. This in turn may result in progressive alterations in their synthetic and reparative activities that adversely affect the material and functional properties of the tissues that they populate. In contrast higher-energy impact may acutely disrupt the integrity of the matrices of the joint tissues, producing both immediate structural changes, followed by a cascade of cell-mediated processes that lead to progressive deterioration in joint tissue composition and function. This chapter will focus on the response of the subchondral bone to injury focusing on the cellular and structural adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACL:

Anterior cruciate ligament

MRI:

Magnetic resonance imaging

OA:

Osteoarthritis

PTOA:

Post-traumatic osteoarthritis

VEGF:

Vascular endothelial cell growth factor

References

  1. Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage. 2004;12 Suppl 1:20–30.

    Article  Google Scholar 

  2. Goldring SR. Role of bone in osteoarthritis pathogenesis. Med Clin North Am. 2009;93(1):25–35. xv. Epub 2008/12/09. doi: S0025-7125(08)00134-X [pii] 10.1016/j.mcna.2008.09.006. PubMed PMID: 19059019.

    Article  PubMed  Google Scholar 

  3. Teitelbaum S. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  CAS  PubMed  Google Scholar 

  4. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–35. doi:10.2353/ajpath.2007.060834. Epub 2007/01/27. PubMed PMID: 17255310. PubMed Central PMCID: PMC1851862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y, et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol. 2001;159(5):1689–99. PubMed PMID: 11696430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010;11(4):219–27. doi:10.1007/s11154-010-9153-1. PubMed PMID: 21188536. PubMed Central PMCID: PMC3028072. Epub 2010/12/29.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi:10.1038/nm.2452. Epub 2011/09/13. nm.2452 [pii]. PubMed.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. doi:10.1038/nm.2448. Epub 2011/09/13. nm.2448 [pii]. PubMed PMID: 21909103; PubMed Central PMCID: PMC3192296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … and more. Endocr Rev. 2013;34(5):658–90. doi:10.1210/er.2012-1026. Epub 2013/04/25. PubMed PMID: 23612223. PubMed Central PMCID: PMC3785641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275(2):1081–101. PubMed 14613308.

    Article  PubMed  Google Scholar 

  11. Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):9–10. PubMed 14698636.

    Google Scholar 

  12. Buckland-Wright JC, Messent EA, Bingham III CO, Ward RJ, Tonkin C. A 2 yr longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology. 2007;46(2):257–64. PubMed PMID: 16837470.

    Article  CAS  PubMed  Google Scholar 

  13. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7. Epub 2010/04/16. doi: NYAS5240 [pii]. 10.1111/j.1749-6632.2009.05240.x. PubMed.

    Article  CAS  PubMed  Google Scholar 

  14. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34. doi:10.1002/jcp.21258. Epub 2007/09/06. PubMed PMID: 17786965.

    Article  CAS  PubMed  Google Scholar 

  15. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707. doi:10.1002/art.34453. Epub 2012/03/07. PubMed PMID: 22392533. PubMed Central PMCID: PMC3366018.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ, Roemer FW, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage. 2008;16(9):1005–10. doi:10.1016/j.joca.2008.02.001. Epub 2008/03/28. PubMed PMID: 18367415. PubMed Central PMCID: PMC2683402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;61(11):1539–44. doi:10.1002/art.24824. Epub 2009/10/31. PubMed PMID: 19877101. PubMed Central PMCID: PMC2789549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Neogi T, Nevitt M, Niu J, Sharma L, Roemer F, Guermazi A, et al. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: the MOST Study. Ann Rheum Dis. 2010;69(5):841–4. doi:10.1136/ard.2009.110114. PubMed PMID: 19762366. PubMed Central PMCID: PMC 2891513. Epub 2009/09/19.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bullough PG. The role of joint architecture in the etiology of arthritis. Osteoarthritis Cartilage. 2004;12 Suppl 1:2–9. PubMed 14698635.

    Article  Google Scholar 

  20. Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Technol. 1997;37(4):343–57. PubMed PMID: 9185156.

    Article  CAS  Google Scholar 

  21. Ashraf S, Walsh DA. Angiogenesis in osteoarthritis. Curr Opin Rheumatol. 2008;20(5):573–80. doi:10.1097/BOR.0b013e3283103d12. Epub 2008/08/14. PubMed PMID: 18698180.

    Article  PubMed  Google Scholar 

  22. Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66(11):1423–8. doi:10.1136/ard.2006.063354. Epub 2007/04/21. PubMed PMID: 17446239. PubMed Central PMCID: PMC2111605.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone. 2012;51(2):204–11. doi:10.1016/j.bone.2011.10.010. Epub 2011/10/26. PubMed PMID: 22023932.

    Article  PubMed  Google Scholar 

  24. Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Franses RE, Mapp PI, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford). 2010;49(10):1852–61. doi:10.1093/rheumatology/keq188. Epub 2010/06/29. PubMed PMID: 20581375. PubMed Central PMCID: PMC2936950.

    Article  CAS  Google Scholar 

  25. Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19(5):914–8. PubMed PMID: 11562141.

    Article  CAS  PubMed  Google Scholar 

  26. Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis: a review. Clin Orthop Relat Res. 2006;443:28–38. PubMed PMID: 16462423.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Meunier PJ, Boivin G. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone. 1997;21(5):373–7. PubMed PMID: 9356729.

    Article  CAS  PubMed  Google Scholar 

  28. Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, et al. Adaptation of subchondral bone in osteoarthritis. Biorheology. 2004;41(3–4):359–68. PubMed PMID: 15299268.

    CAS  PubMed  Google Scholar 

  29. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802–9. doi:10.1002/jor.21359. PubMed PMID: 21520254. PubMed Central PMCID: PMC3082940. Epub 2011/04/27.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roos EM. Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol. 2005;17(2):195–200. PubMed PMID: 15711235.

    Article  PubMed  Google Scholar 

  31. Roos H, Adalberth T, Dahlberg L, Lohmander LS. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995;3(4):261–7. Epub 1995/12/01. PubMed PMID: 8689461.

    Article  CAS  PubMed  Google Scholar 

  32. Sommerlath K, Lysholm J, Gillquist J. The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year follow-up. Am J Sports Med. 1991;19(2):156–62. Epub 1991/03/01. PubMed PMID: 2039067.

    Article  CAS  PubMed  Google Scholar 

  33. Buckland-Wright JC, Lynch JA, Dave B. Early radiographic features in patients with anterior cruciate ligament rupture. Ann Rheum Dis. 2000;59(8):641–6. PubMed PMID: 10913063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kuroki K, Cook CR, Cook JL. Subchondral bone changes in three different canine models of osteoarthritis. Osteoarthritis Cartilage. 2011;19(9):1142–9. doi:10.1016/j.joca.2011.06.007. Epub 2011/07/09. PubMed PMID: 21736944.

    Article  CAS  PubMed  Google Scholar 

  35. Intema F, Sniekers YH, Weinans H, Vianen ME, Yocum SA, Zuurmond AM, et al. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J Bone Miner Res. 2010;25(7):1650–7. doi:10.1002/jbmr.39. Epub 2010/03/05. PubMed PMID: 20200954.

    Article  PubMed  Google Scholar 

  36. Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, et al. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage. 2010;18(5):691–8. doi:10.1016/j.joca.2010.01.004. Epub 2010/02/24. PubMed PMID: 20175978.

    Article  CAS  PubMed  Google Scholar 

  37. Sniekers YH, Intema F, Lafeber FP, van Osch GJ, van Leeuwen JP, Weinans H, et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2008;9:20. doi:10.1186/1471-2474-9-20. Epub 2008/02/14. PubMed PMID: 18269731. PubMed Central PMCID: PMC2259345.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fahlgren A, Messner K, Aspenberg P. Meniscectomy leads to an early increase in subchondral bone plate thickness in the rabbit knee. Acta Orthop Scand. 2003;74(4):437–41. doi:10.1080/00016470310017758. Epub 2003/10/03. PubMed PMID: 14521295.

    Article  PubMed  Google Scholar 

  39. Botter SM, van Osch GJ, Waarsing JH, van der Linden JC, Verhaar JA, Pols HA, et al. Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthritis Cartilage. 2008;16(4):506–14. doi:10.1016/j.joca.2007.08.005. Epub 2007/09/29. PubMed PMID: 17900935.

    Article  CAS  PubMed  Google Scholar 

  40. Cook JL, Tomlinson JL, Kreeger JM, Cook CR. Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med. 1999;27(5):658–65. Epub 1999/09/25. PubMed PMID: 10496586.

    CAS  PubMed  Google Scholar 

  41. Lacourt M, Gao C, Li A, Girard C, Beauchamp G, Henderson JE, et al. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis. Osteoarthritis Cartilage. 2012;20(6):572–83. doi:10.1016/j.joca.2012.02.004. Epub 2012/02/22. PubMed PMID: 22343573.

    Article  CAS  PubMed  Google Scholar 

  42. Norrdin RW, Stover SM. Subchondral bone failure in overload arthrosis: a scanning electron microscopic study in horses. J Musculoskelet Neuronal Interact. 2006;6(3):251–7. Epub 2006/12/05. PubMed PMID: 17142946.

    CAS  PubMed  Google Scholar 

  43. Boyde A, Firth EC. High resolution microscopic survey of third metacarpal articular calcified cartilage and subchondral bone in the juvenile horse: possible implications in chondro-osseous disease. Microsc Res Tech. 2008;71(6):477–88. doi:10.1002/jemt.20575. Epub 2008/03/06. PubMed PMID: 18320577.

    Article  PubMed  Google Scholar 

  44. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14(2):103–9. Epub 1993/03/01. PubMed PMID: 8334026.

    Article  CAS  PubMed  Google Scholar 

  45. Mori S, Harruff R, Burr DB. Microcracks in articular calcified cartilage of human femoral heads. Arch Pathol Lab Med. 1993;117(2):196–8. Epub 1993/02/01. PubMed PMID: 7678956.

    CAS  PubMed  Google Scholar 

  46. Lane LB, Villacin A, Bullough PG. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint surg. 1997;59(3):272–8. (British volume) Epub 1977/08/01. PubMed PMID: 893504.

    Google Scholar 

  47. Patel N, Buckland-Wright C. Advancement in the zone of calcified cartilage in osteoarthritic hands of patients detected by high definition macroradiography. Osteoarthritis Cartilage. 1999;7(6):520–5. doi:10.1053/joca.1999.0268. Epub 1999/11/24. PubMed PMID: 10558849.

    Article  CAS  PubMed  Google Scholar 

  48. Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF. Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthritis Cartilage. 2007;15(7):743–51. doi:10.1016/j.joca.2007.01.020. Epub 2007/03/23. PubMed PMID: 17376709.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema? Radiology. 1988;167(3):757–60. doi:10.1148/radiology.167.3.3363136. Epub 1988/06/01. PubMed PMID: 3363136.

    Article  CAS  PubMed  Google Scholar 

  50. Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42(2):105–18. doi:10.1016/j.semarthrit.2012.03.009. Epub 2012/05/01. PubMed PMID: 22542276. PubMed Central PMCID: PMC3653632.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi R, Argenson JN, Champsaur P, et al. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthritis Cartilage. 2010;18(11):1429–35. doi:10.1016/j.joca.2010.08.008. Epub 2010/08/24. PubMed PMID: 20727415.

    Article  CAS  PubMed  Google Scholar 

  52. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol. 2008;37(5):423–31. doi:10.1007/s00256-008-0446-3. Epub 2008/02/16. PubMed PMID: 18274742.

    Article  PubMed  Google Scholar 

  53. Crema MD, Roemer FW, Zhu Y, Marra MD, Niu J, Zhang Y, et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging–the MOST study. Radiology. 2010;256(3):855–62. doi:10.1148/radiol.10091467. PubMed PMID: 20530753. PubMed Central PMCID: PMC2923728. Epub 2010/06/10.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139(5 Pt 1):330–6. Epub 2003/09/11. PubMed PMID: 12965941.

    Article  PubMed  Google Scholar 

  55. Hernandez-Molina G, Neogi T, Hunter DJ, Niu J, Guermazi A, Reichenbach S, et al. The association of bone attrition with knee pain and other MRI features of osteoarthritis. Ann Rheum Dis. 2008;67(1):43–7. Epub 2008/01/01. PubMed PMID: 19623678.

    Article  CAS  PubMed  Google Scholar 

  56. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage. 2009;17(9):1115–31. doi:10.1016/j.joca.2009.03.012. Epub 2009/04/11. PubMed PMID: 19358902.

    Article  CAS  PubMed  Google Scholar 

  57. Roemer FW, Hunter DJ, Guermazi A. MRI-based semiquantitative assessment of subchondral bone marrow lesions in osteoarthritis research. Osteoarthritis Cartilage. 2009;17(3):414–5. doi:10.1016/j.joca.2008.07.019. Author reply 6–7. Epub 2008/10/25. PubMed PMID: 18948039.

    Article  CAS  PubMed  Google Scholar 

  58. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage. 2006;14(10):1081–5. doi:10.1016/j.joca.2006.05.011. Epub 2006/06/30. PubMed PMID: 16806996.

    Article  CAS  PubMed  Google Scholar 

  59. Bancroft LW, Peterson JJ, Kransdorf MJ. Cysts, geodes, and erosions. Radiol Clin North Am. 2004;42(1):73–87. doi:10.1016/S0033-8389(03)00165-9. Epub 2004/03/31. PubMed PMID: 15049524.

    Article  PubMed  Google Scholar 

  60. Mandalia V, Henson JH. Traumatic bone bruising–a review article. Eur J Radiol. 2008;67(1):54–61. doi:10.1016/j.ejrad.2008.01.060. Epub 2008/06/07. PubMed PMID: 18534802.

    Article  CAS  PubMed  Google Scholar 

  61. Mink JH, Deutsch AL. Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology. 1989;170(3 Pt 1):823–9. doi:10.1148/radiology.170.3.2916038. Epub 1989/03/01. PubMed PMID: 2916038.

    Article  CAS  PubMed  Google Scholar 

  62. Bohndorf K. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol. 1999;28(10):545–60. Epub 1999/11/07. PubMed PMID: 10550531.

    Article  CAS  PubMed  Google Scholar 

  63. Roemer FW, Bohndorf K. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol. 2002;31(11):615–23. doi:10.1007/s00256-002-0575-z. Epub 2002/10/24. PubMed PMID: 12395272.

    Article  CAS  PubMed  Google Scholar 

  64. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis. Osteoarthritis Cartilage. 2007;15(2):179–86. PubMed PMID: 16905342.

    Article  CAS  PubMed  Google Scholar 

  65. van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15(3):237–44. PubMed PMID: 17204437.

    Article  PubMed  Google Scholar 

  66. Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990;33(6):853–8. Epub 1990/06/01. PubMed PMID: 2363739.

    Article  CAS  PubMed  Google Scholar 

  67. Felson DT, Gale DR, Elon Gale M, Niu J, Hunter DJ, Goggins J, et al. Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford). 2005;44(1):100–4. doi:10.1093/rheumatology/keh411. Epub 2004/09/24. PubMed PMID: 15381791.

    Article  CAS  Google Scholar 

  68. Zoricic S, Maric I, Bobinac D, Vukicevic S. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J Anat. 2003;202(Pt 3):269–77. Epub 2003/04/26. PubMed PMID: 12713267. PubMed Central PMCID: PMC1571079.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage. 2007;15(6):597–604. doi:10.1016/j.joca.2007.02.005. Epub 2007/03/30. PubMed PMID: 17391995.

    Article  CAS  PubMed  Google Scholar 

  70. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage. 1998;6(5):306–17. doi:10.1053/joca.1998.0129. Epub 1999/04/10.

    Article  PubMed  Google Scholar 

  71. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage. 2000;8(1):25–33. doi:10.1053/joca.1999.0267. Epub 1999/12/23. PubMed PMID: 10607496.

    Article  PubMed  Google Scholar 

  72. Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol. 2002;169(1):507–14. Epub 2002/06/22. PubMed PMID: 12077282.

    Article  CAS  PubMed  Google Scholar 

  73. Scharstuhl A, Diepens R, Lensen J, Vitters E, van Beuningen H, van der Kraan P, et al. Adenoviral overexpression of Smad-7 and Smad-6 differentially regulates TGF-beta-mediated chondrocyte proliferation and proteoglycan synthesis. Osteoarthritis Cartilage. 2003;11(11):773–82. Epub 2003/11/12. PubMed PMID: 14609530.

    Article  CAS  PubMed  Google Scholar 

  74. Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48(12):3442–51. doi:10.1002/art.11328. Epub 2003/12/16. PubMed PMID: 14673995.

    Article  CAS  PubMed  Google Scholar 

  75. Amin AK, Huntley JS, Simpson AH, Hall AC. Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. The Journal of bone and joint surgery. 2009;91(5):691–9. doi:10.1302/0301-620X.91B5.21544. (British volume) Epub 2009/05/02. PubMed PMID: 19407309.

    Article  CAS  PubMed  Google Scholar 

  76. Amin AK, Huntley JS, Simpson AH, Hall AC. Increasing the osmolarity of joint irrigation solutions may avoid injury to cartilage: a pilot study. Clin Orthop Relat Res. 2010;468(3):875–84. doi:10.1007/s11999-009-0983-7. Epub 2009/07/31. PubMed PMID: 19641975. PubMed Central PMCID: PMC2816775.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27(10):1347–52. doi:10.1002/jor.20883. Epub 2009/04/11. PubMed PMID: 19360842. PubMed Central PMCID: PMC2748158.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Goldring Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldring, S.R. (2015). The Response of the Subchondral Bone to Injury. In: Olson, MD, S., Guilak, PhD, F. (eds) Post-Traumatic Arthritis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7606-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7606-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7605-5

  • Online ISBN: 978-1-4899-7606-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics