Skip to main content

Use of Bisphosphonates in Genetic Diseases Other than Osteogenesis Imperfecta

  • Chapter
  • First Online:
Bone Drugs in Pediatrics
  • 755 Accesses

Abstract

Besides osteogenesis imperfecta, several genetic diseases may cause alterations in bone metabolism, with low bone mass, low bone strength, and fragility fractures. Some other diseases are instead characterized by bone formation outside the skeletal system (heterotopic ossification). Although little data are available, and mainly from case reports and not from controlled studies on significantly large samples, bisphosphonates seem to be effective to increase bone mass, reduce the risk of fractures, alleviate bone pain, and even, in some measure, hinder the formation of heterotopic bone. Only for the more common diseases, like Duchenne muscular dystrophy and cystic fibrosis, there are sufficient data to recommend the prudent use of BPs as a standard treatment of bone complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the Pediatric Position Development Conference (PPDC) 2013 of the International Society of Clinical Densitometry (ISCD), the diagnosis of osteoporosis in children and adolescents should not be made on the basis of densitometric criteria alone. Osteoporosis can be diagnosed in the presence of one or more vertebral compression (crush) fractures, not attributable to local disease or high-energy trauma. In the absence of such fractures, a diagnosis of osteoporosis requires the presence of both a BMD Z-score ≤ −2.0 and a clinically significant fracture history (defined as “two or more long bone fractures by age 10 years” or “three or more long bone fractures at any age up to 19 years”). The ISCD PPDC 2013 document can be read at: http://www.iscd.org/2013-iscd-official-positions-pediatric/.

  2. 2.

    DXA measures an “areal” BMD (aBMD, i.e., BMC in g/cm2 of bone projection area) and not the true “volumetric” BMD (vBMD, i.e., BMC in g/cm3 of bone volume). For mathematical reasons, if two bones of equal vBMD (g/cm3) are analyzed with DXA, the smaller bone will have a lower aBMD than the larger bone; that is, DXA overestimates aBMD as bone size increases. For this reason, aBMD is unsuitable for the study of growing subjects, and a surrogate of vBMD, called “bone mineral apparent density” (BMAD, g/cm3), and its Z-score are preferred. The BMAD is calculated by assuming that the vertebral body is a cube or a cylinder, whose volume can be easily calculated from the projection height and width.

References

  1. Russell RGG. Bisphosphonates: the first 40 years. Bone. 2011;49:2–19.

    Article  PubMed  CAS  Google Scholar 

  2. Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AF, van der Sluijs HA, et al. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci U S A. 1999;96:1054–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Shaheen R, Al-Owain M, Sakati N, Alzayed ZS, Alkuraya FS. FKBP10 and Bruck syndrome: phenotypic heterogeneity or call for reclassification? Am J Hum Genet. 2010;87:306–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Yapicioğlu H, Ozcan K, Arikan O, Satar M, Narli N, Ozbek MH. Bruck syndrome: osteogenesis imperfecta and arthrogryposis multiplex congenita. Ann Trop Paediatr. 2009;29:159–62.

    Article  PubMed  Google Scholar 

  5. Breslau-Siderius EJ, Engelbert RH, Pals G, van der Sluijs JA. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J Pediatr Orthop B. 1998;7:35–8.

    Article  PubMed  CAS  Google Scholar 

  6. Andiran N, Alikasifoglu A, Alanay Y, Yordam N. Cyclic pamidronate treatment in Bruck syndrome: proposal of a new modality of treatment. Pediatr Int. 2008;50:836–8.

    Article  PubMed  Google Scholar 

  7. Balemans W, Van Haul W. Minireview: the genetics of low density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology. 2007;148:2622–9.

    Article  PubMed  CAS  Google Scholar 

  8. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  PubMed  CAS  Google Scholar 

  9. Ai M, Heeger S, Bartels CF, Schelling DK, the Osteoporosis-Pseudoglioma Collaborative Group. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet. 2005;77:741–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Narumi S, Numakura C, Shiihara T, Seiwa C, Nozaki Y, Yamagata T, et al. Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: Identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am J Med Genet. 2010;152A:133–40.

    Article  PubMed  CAS  Google Scholar 

  11. Marques-Pinheiroa A, Levasseurb R, Cormierd C, Bonneau J, Boileau C, Varret M, et al. Novel LRP5 gene mutation in a patient with osteoporosis-pseudoglioma syndrome. Joint Bone Spine. 2010;77:151–3.

    Article  CAS  Google Scholar 

  12. Zacharin M, Cundy T. Osteoporosis pseudoglioma syndrome: treatment of spinal osteoporosis with intravenous bisphosphonates. J Pediatr. 2000;137:410–5.

    Article  PubMed  CAS  Google Scholar 

  13. Bayram F, Tanriverdi F, Kurtoğlu S, Atabek ME, Kula M, Kaynar L, Keleştimur F. Effects of 3 years of intravenous pamidronate treatment on bone markers and bone density in a patient with osteoporosis-pseudoglioma syndrome (OPPG). J Pediatr Endocrinol Metab. 2006;19:275–9.

    Article  PubMed  Google Scholar 

  14. Streeten EA, McBride D, Puffenberger E, Hoffman MC, Pollin TI, Donnelly P, et al. Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone. 2008;43:584–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Barros ER, da Silva MR D, Kunii IS, Lazaretti-Castro M. Three years follow-up of pamidronate therapy in two brothers with osteoporosis-pesudoglioma syndrome (OPPG) carrying an LRP5 mutation. J Pediatr Endocrinol Metab. 2008;21:811–8.

    Article  PubMed  Google Scholar 

  16. Tüysüz B, Bursali A, Alp Z, Suyugül N, Laine CM, Mäkitie O. Osteoporosis-pseudoglioma syndrome: three novel mutations in the LRP5 gene and response to bisphosphonate treatment. Horm Res Paediatr. 2012;77:115–20.

    Article  PubMed  CAS  Google Scholar 

  17. Szafrański T, Pawlak-Buś K, Leszczyński P. Kwas zoledronowy w leczeniu wtórnej osteoporozy w przebiegu homocystynurii [Zoledronic acid in the treatment of secondary osteoporosis due to homocystinuria]. Reumatologia. 2010;48:133–8.

    Google Scholar 

  18. Gahl WA, Bernardini I, Chen S, Kurtz D, Horvath K. The effect of oral betaine on vertebral body bone density in pyridoxine-non-responsive homocystinuria. J Inherit Metab Dis. 1998;11:291–8.

    Article  Google Scholar 

  19. Shore EM, Feldman GJ, Xu M, Kaplan FS. The genetics of fibrodysplasia ossificans progressiva. Clin Rev Bone Miner Metab. 2005;3:201–4.

    Article  CAS  Google Scholar 

  20. Shore EM, Kaplan FS. Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol. 2010;6:518–27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Kaplan FS, Le Merrer M, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, et al. Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheumatol. 2008;22:191–205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Shore EM, Xu MQ, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38:525–7.

    Article  PubMed  CAS  Google Scholar 

  23. Connor JM, Evans DA. Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients. J Bone Joint Surg Br. 1982;64:76–83.

    PubMed  CAS  Google Scholar 

  24. Shore EM, Kaplan FS. Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone. 2008;43:427–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Kaplan FS, Xu MQ, Glaser DL, Collins F, Connor M, Kitterman J, et al. Early diagnosis of fibrodysplasia ossificans progressiva. Pediatrics. 2008;121:E1295–300.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bassett CAL, Donath A, Macagno F, Preisig R, Fleisch H, Francis MD. Diphosphonates in the treatment of myositis ossificans. Lancet. 1969;2:845.

    Article  PubMed  CAS  Google Scholar 

  27. Fleisch H. Heterotopic calcification and ossification (Chapter 3.6). In: Fleisch H, editor. Bisphosphonates in bone disease. From the laboratory to the patient. 4th ed. San Diego: Academic; 2000. p. 160–5.

    Chapter  Google Scholar 

  28. Geho WB, Whiteside JA. Experience with disodium etidronate in diseases of ectopic calcification. In: Frame B, Parfitt AM, Duncan H, editors. Clinical aspects of metabolic bone diseases. Amsterdam: Excerpta Medica; 1973. p. 506–11.

    Google Scholar 

  29. Smith R, Russell RGG, Woods CG. Myositis ossificans progressiva clinical features of eight patients and their response to treatment. J Bone Joint Surg. 1976;58-B:48–57.

    Google Scholar 

  30. Tempstra L, Rauch F, Plotkins H, Travers R, Glorieux FH. Bone mineralization in polyostotic fibrous dysplasia: histomorphometric analysis. J Bone Miner Res. 2002;17:1949–53.

    Article  Google Scholar 

  31. Chapurlat RD, Orcel P. Fibrous dysplasia of bone and McCune-Albright syndrome. Best Pract Res Clin Rheumatol. 2008;22:55–69.

    Article  PubMed  CAS  Google Scholar 

  32. Plotkins H, Rauch F, Zeitlin L, et al. Effect of pamidronate treatment in children with polyostotic fibrous dysplasia of bone. J Clin Endocrinol Metab. 2003;88:4569–75.

    Article  CAS  Google Scholar 

  33. Rethoré MO, Larget-Piet L, Abonyi D, Boeswillwald M, Berger R, Carpentier S, et al. 4 Cases of trisomy for the short arm of chromosome 9. Individualization of a new morbid entity. Ann Genet. 1970;13:217–32.

    PubMed  Google Scholar 

  34. San Román Muñoz M, Herranz Fernández JL, Tejerina Puente A, Arteaga Manjón-Cabeza R, López Grondona F. Trisomía 9p. An Pediatr (Barc). 2004;61:336–9.

    Article  Google Scholar 

  35. Temtamy SA, Kamel AK, Ismail S, Helmy NA, Aglan MS, El Gammal M, et al. Phenotypic and cytogenetic spectrum of 9p trisomy. Genet Couns. 2007;18:29–49.

    PubMed  CAS  Google Scholar 

  36. Littooij AS, Hochstenbach R, Sinke RJ, van Tintelen P, Giltay JC. Two cases with partial trisomy 9p: molecular cytogenetics characterization and clinical follow-up. Am J Med Genet. 2002;109:125–32.

    Article  PubMed  Google Scholar 

  37. Yen YL, Lin SP, Chen MR, Niu DM. Clinical features of Ehlers-Danlos syndrome. J Formos Med Assoc. 2006;105:475–80.

    Article  PubMed  Google Scholar 

  38. Dolan AL, Arden NK, Grahame R, Spector TD. Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry. Ann Rheum Dis. 1998;57:630–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One. 2009;4:e5275.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Kohlmeier L, Gasner C, Bachrach LK, Marcus R. The bone mineral status of patients with Marfan syndrome. J Bone Miner Res. 1995;10:1550–5.

    Article  PubMed  CAS  Google Scholar 

  41. Grover M, Brunetti-Perri N, Belmont J, Phan K, Tran A, Shypailo RJ, et al. Assessment of bone mineral status in children with Marfan syndrome. Am J Med Genet A. 2012;158A:2221–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Moura B, Tubach F, Sulpice M, Boileau C, Jondeau G, Muti C, et al. Bone mineral density in Marfan syndrome. A large case–control study. Joint Bone Spine. 2006;73:733–5.

    Article  PubMed  Google Scholar 

  43. Nistala H, Lee-Arteaga S, Carta L, Cook JR, Smaldone S, Siciliano G, et al. Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm. Hum Mol Genet. 2010;19:4790–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Siegel IM. Fractures of long bones in Duchenne muscular dystrophy. J Trauma. 1977;17:219–22.

    Article  PubMed  CAS  Google Scholar 

  45. Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Moseklide L. Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med. 2001;33:150–5.

    Article  PubMed  CAS  Google Scholar 

  46. Bothwell JE, Gordon KE, Dooley JM, MacSween J, Cummings EA, Salisbury S. Vertebral fractures in boys with Duchenne muscular dystrophy. Clin Pediatr. 2003;42:353–6.

    Article  CAS  Google Scholar 

  47. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.

    PubMed  CAS  Google Scholar 

  48. Crabtree NJ, Roper H, McMurchie H, Shaw NJ. Regional changes in bone area and bone mineral content in boys with Duchenne muscular dystrophy receiving corticosteroid therapy. J Pediatr. 2010;156:450–5.

    Article  PubMed  CAS  Google Scholar 

  49. Söderpalm AC, Magnusson P, Ahlander AC, Karlsson J, Kroksmark AK, Tulinius M, Swolin Eide D. Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord. 2007;17:919–28.

    Article  PubMed  Google Scholar 

  50. Aparicio LF, Jurkovic M, DeLullo J. Decreased bone density in ambulatory patients with Duchenne muscular dystrophy. J Pediatr Orthop. 2002;22:179–81.

    PubMed  Google Scholar 

  51. Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14:761–7.

    Article  PubMed  CAS  Google Scholar 

  52. Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD. Alendronate in the treatment of low bone mass in steroid-treated boys with Duchenne’s muscular dystrophy. Arch Phys Med Rehabil. 2005;86:284–8.

    Article  PubMed  Google Scholar 

  53. Palomo Atance E, Ballester Herrera MJ, Márquez de La Plata MA, Medina Cano E, Carmona Vilchez RM. Alendronate treatment of osteoporosis secondary to Duchenne muscular dystrophy. An Pediatr (Barc). 2011;74:122–5.

    Google Scholar 

  54. Gordon KE, Dooley JM, Sheppard KM, MacSween J, Esser MJ. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;1272:e353–8.

    Article  Google Scholar 

  55. Haworth CS. Impact of cystic fibrosis on bone health. Curr Opin Pulm Med. 2010;16:616–22.

    Article  PubMed  CAS  Google Scholar 

  56. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL, et al. Consensus statement: guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90:1888–96.

    Article  PubMed  CAS  Google Scholar 

  57. Sermet Gaudelus I, Nove Josserand R, Loeille GA, Dacremont G, Souberbielle JC, Fritsch J, et al. Fédération française des centres de ressource et de compétence en mucoviscidose. Recommandations pour la prise en charge de la demineralization. Arch Pediatr. 2008;15:301–12.

    Article  PubMed  CAS  Google Scholar 

  58. Bianchi ML, Colombo C, Assael BM, Dubini A, Lombardo M, Quattrucci S, et al. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med. 2013;1(5):377–85.

    Article  PubMed  CAS  Google Scholar 

  59. Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2012;4, CD002010. doi:10.1002/14651858.CD002010.pub3.

    PubMed  Google Scholar 

  60. Haworth CS, Sharples L, Hughes V, Elkin SL, Hodson ME, Conway SP, et al. Multicentre trial of weekly risedronate on bone density in adults with cystic fibrosis. J Cyst Fibros. 2011;10:470–6.

    Article  PubMed  CAS  Google Scholar 

  61. Sermet-Gaudelus I, Bianchi ML, Garabédian M, Aris RM, Morton A, Hardin DS, et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10 Suppl 2:S16–23.

    Article  PubMed  Google Scholar 

  62. Mikosch P, Hughes D. An overview on bone manifestations in Gaucher disease. Wien Med Wochenschr. 2010;160:609–24.

    Article  PubMed  Google Scholar 

  63. Pastores GM, Meere PA. Musculoskeletal complications associated with lysosomal storage disorders: Gaucher disease and Hurler-Scheie syndrome (mucopolysaccharidosis type I). Curr Opin Rheumatol. 2005;17:70–8.

    Article  PubMed  Google Scholar 

  64. Elstein D, Foldes AJ, Zahrieh D, Cohn GM, Djordjevic M, Brutaru C, Zimran A. Significant and continuous improvement in bone mineral density among type 1 Gaucher disease patients treated with velaglucerase alfa: 69-month experience, including dose reduction. Blood Cells Mol Dis. 2011;47:56–61.

    Article  PubMed  CAS  Google Scholar 

  65. Wenstrup RJ, Kacena KA, Kaplan P, et al. Effect of enzyme replacement therapy with imiglucerase on BMD in type 1 Gaucher disease. J Bone Miner Res. 2007;21:119–26.

    Google Scholar 

  66. Cox TM, Aerts JM, Belmatoug N, Cappellini MD, vom Dahl S, Goldblatt J, Grabowski GA, Hollak CE, Hwu P, Maas M, Martins AM, Mistry PK, Pastores GM, Tylki-Szymanska A, Yee J, Weinreb N. Management of non-neuronopathic Gaucher disease with special reference to pregnancy, splenectomy, bisphosphonate therapy, use of biomarkers and bone disease monitoring. J Inherit Metab Dis. 2008;31:319–36.

    Article  PubMed  CAS  Google Scholar 

  67. Wenstrup RJ, Bailey L, Grabowski GA, Moskovitz J, Oestreich AE, Wu W, Sun S. Gaucher disease: alendronate disodium improves bone mineral density in adults receiving enzyme therapy. Blood. 2004;104:1253–7.

    Article  PubMed  CAS  Google Scholar 

  68. Harinck HI, Bijvoet OL, van der Meer JW, Jones B, Onvlee GJ. Regression of bone lesions in Gaucher’s disease during treatment with aminohydroxypropylidene bisphosphonate. Lancet. 1984;2:513.

    Article  PubMed  CAS  Google Scholar 

  69. Bembi B, Agosti E, Boehm P, Nassimbeni G, Zanatta M, Vidoni L. Aminohydroxypropylidene-biphosphonate in the treatment of bone lesions in a case of Gaucher’s disease type 3. Acta Paediatr. 1994;83:122–4.

    Article  PubMed  CAS  Google Scholar 

  70. Samuel R, Katz K, Papapoulos SE, Yosipovitch Z, Zaizov R, Liberman UA. Aminohydroxy propylidene bisphosphonate (APD) treatment improves the clinical skeletal manifestations of Gaucher’s disease. Pediatrics. 1994;94:385–9.

    PubMed  CAS  Google Scholar 

  71. Ciana G, Cuttini M, Bembi B. Short-term effects of pamidronate in patients with Gaucher’s disease and severe skeletal involvement. N Engl J Med. 1997;337:712.

    Article  PubMed  CAS  Google Scholar 

  72. Robinson C, Baker N, Noble J, King A, David G, Sillence D, et al. The osteodystrophy of mucolipidosis type III and the effects of intravenous pamidronate treatment. J Inherit Metab Dis. 2002;25:681–93.

    Article  PubMed  CAS  Google Scholar 

  73. Case LE, Hanna R, Frush DP, Krishnamurthy V, DeArmey S, Mackey J, et al. Fractures in children with Pompe disease: a potential long-term complication. Pediatr Radiol. 2007;37:437–45.

    Article  PubMed  Google Scholar 

  74. van den Berg LE, Zandbergen AA, van Capelle CI, de Vries JM, Hop WC, van den Hout JM, et al. Low bone mass in Pompe disease: muscular strength as a predictor of bone mineral density. Bone. 2010;47:643–9.

    Article  PubMed  Google Scholar 

  75. Khan A, Weinstein Z, Hanley DA, Casey R, McNeil C, Ramage B, et al. In vivo bone architecture in Pompe disease using high-resolution peripheral computed tomography. JIMD Rep. 2013;7:81–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Bianchi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bianchi, M.L. (2014). Use of Bisphosphonates in Genetic Diseases Other than Osteogenesis Imperfecta. In: Klein, G. (eds) Bone Drugs in Pediatrics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7436-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7436-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7435-8

  • Online ISBN: 978-1-4899-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics