Skip to main content

Enzymes as dough improvers

  • Chapter
Advances in Baking Technology

Abstract

The objectives of the application of enzymes in baking technology are the optimization of dough properties and the quality improvement of bakery products (Barrett, 1975; Dubois, 1980a, b, c; Krueger and Lineback, 1987; Hammer, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AACC, (1983) American Association of Cereal Chemists. Approved methods, St Paul, MN.

    Google Scholar 

  • Abe, J., Bergmann, F.W., Obata, K. and Hizukuri, S. (1988a) Production of the raw-starch digesting amylase of Aspergillus sp. K-27. Appl. Microbiol. Biotechnol., 11, 441.

    Google Scholar 

  • Abe, J., Nakajima, K., Nagano, H. and Hizukuri, S. (1988b) Properties of the raw-starch digesting amylase of the Aspergillus sp. K-27: A synergistic action of glucoamylase and alpha-amylase. Carbohydr. Research, 175, 85.

    Article  Google Scholar 

  • Abe, J., Nakajima, K. and Hizukuri, S. (1990) Alteration of the properties of Aspergillus sp K-27 glucoamylase on limited proteolysis with subtilisin. Carbohydr. Research, 203, 129.

    Article  Google Scholar 

  • American Institute of Baking (AIB) (1990) Evaluation of Novamyl. Unpublished Report to Novo Nordisk, Danbury, Ct., American Institute of Baking, Manhattan, KS.

    Google Scholar 

  • Anon (1988) Veron FD SUPER and Veron ESL — New Developments for Modern Baking Technique. Enzyme-Report, Roehm-Enzymetechnologie, p. 13.

    Google Scholar 

  • Anon (1989) Shelf life of breads increases with enzyme systems. Food Engineering, 61 (3), 57-58.

    Google Scholar 

  • Anon (1990) Biotechnology enzyme firm embraces innovation. Food Technology, 44 (9), 117.

    Google Scholar 

  • Anon (1991) Enzymes for baking improve volume. Food Processing, 52, 134-135.

    Google Scholar 

  • Barrett, F.F. (1975) Enzyme uses in the milling and baking industries. In Enzymes in Food Processing, ed. Reed, G., Academic Press, New York, pp. 301–348.

    Google Scholar 

  • Beck H., Johnson, J.A. and Miller, B.S. (1957) Studies of soluble dextrin fraction and sugar content of bread baked with alpha-amylase from different sources. Cereal Chem., 34, 211–217.

    Google Scholar 

  • Bergmann, F.W., Abe, J. and Hizukuri, S. (1988) Selection of organisms which produce raw-starch degrading enzymes. Appl. Microbiol. Biotechnol., 27, 443.

    Google Scholar 

  • Bussiere, G. and de la Gueriviere, J.F. (1974) Utilization d’alpha-amylase et de glucoamylase en technologie de panification industrielle. Ann. Technol. Agric., 23, 175.

    Google Scholar 

  • Cauvain, S.P. and Chamberlain, N. (1988) The bread improving effect of fungal amylase. J. Cereal Sci., 8, 239.

    Article  Google Scholar 

  • Chamberlain, N.T., Collins, T.H. and McDermott, E.E. (1981) Alpha-amylase and bread properties. J. Food Technol., 16, 127.

    Article  Google Scholar 

  • Conn, J.F., Johnson, J.A. and Miller, B.S. (1950) An investigation of commercial fungal and bacterial alpha-amylase in baking. Cereal Chem. 27, 191–205.

    Google Scholar 

  • Cultor, Ltd (1989) European patent application No. 0 338 452 A1, filed 4/14/1989. Inventors: Haarasita, S., Pullinen, T. and Tammersalo-Karsten, I., Helsinki, Finland.

    Google Scholar 

  • Dragsdorf, R.D. and Varriano-Marston, E. (1980) Bread staling: X-ray diffraction studies on bread supplemented with alpha-amylase from different sources. Cereal Chem., 57, 310–314.

    Google Scholar 

  • Drapon, R. and Godon, B. (1987) Role of enzymes in baking. In Enzymes and their Role in Cereal Technology, eds. Kruger, J.E., Lineback, D. and Stauffer, C.E. American Association of Cereal Chemists, St Paul, MN, pp. 281–324.

    Google Scholar 

  • Dubois, D.K. (1980a) Enzymes in baking. I. Classification. Research Department Technical Bulletin 2(10), American Institute of Baking, Manhattan, KS.

    Google Scholar 

  • Dubois, D.K. (1980b) Enzymes in baking. II. Applications. Research Department Technical Bulletin 2(11), American Institute of Baking, Manhattan, KS.

    Google Scholar 

  • Dubois, D.K. (1980c) Enzymes in baking. III. Products. Research Department Technical Bulletin 2(12), American Institute of Baking, Manhattan, KS.

    Google Scholar 

  • Duxbury, D.D. (1990) Fungal enzyme provides extended shelf life, tolerance, stability. Food Processing, February, 92-93.

    Google Scholar 

  • Eskin, N.A., Grossman, S. and Pinsky, A. (1977) Biochemistry of lipoxygenase in relation to food quality. CRC Crit. Rev. Food Sci. Nutr., 9, 1–40.

    Article  Google Scholar 

  • Faubion, J.M. and Hoseney R.C. (1981) Lipoxygenase: its biochemistry and role in breadbaking. Cereal Chem., 58, 175–180.

    Google Scholar 

  • Fausch, H., Kuendig, W. and Neukom, H. (1963) Ferulic acid as a component of a glycoprotein from wheat flour. Nature, 199, 287.

    Article  Google Scholar 

  • Fox, P.F., and Mulvihill, (1982). Enzymes in wheat, flour, and bread. In Advances in Cereal Science and Technology, Vol.7(3), ed. Pomeranz, Y., American Association of Cereal Chemists, St Paul, MN, pp. 107–156.

    Google Scholar 

  • Fujii, M., Homma, T. and Taniguchi, M. (1988) Synergism of alpha-amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol. Bioeng., 32, 910.

    Article  Google Scholar 

  • Gaines, C.S. and Finney, P.L. (1989) Effects of selected commercial enzymes on cookie spread and cookie dough consistency. Cereal Chem., 66, 73–78.

    Google Scholar 

  • Gerhartz, W. (1990) Enzymes in Industry, VCH, Weinheim, Germany.

    Google Scholar 

  • Grampp, E., Sproesser, B. and Uhlig, H. (1972) German Federal Republic patent application No. 2 052 57.

    Google Scholar 

  • Haarasilta, S., Vaeisaenen, S. and Pullinen, T. (1991) A new generation dough conditioner — combination of oxidative and hydrolytic enzymes. 76th AACC Annual Meeting, October 1991, Poster (Abstract no. 146).

    Google Scholar 

  • Hammer, R. J. (1992). Enzymes and the baking industry: Friends or foes? In Cereal Chemistry and Technology: A Long Past and Bright Future, ed. P. Feillet, Institut National de la Recherche Agronomique, 9th International Cereal and Bread Congress, Paris, 1992.

    Google Scholar 

  • Hayashida, S., Kunisaki, S., Nakao, M. and Flor, P.O. (1982) Evidence for raw-starch affinity site of Aspergillus awamori glucoamylase I. Agric. Biol. Chem., 46, 83.

    Article  Google Scholar 

  • Hebeda, R.E., Bowles, L.K. and Teague, W.M. (1990) Developments in enzymes for retarding staling of baked goods. Cereal Foods World, 35(5), 444–457.

    Google Scholar 

  • Holas, J., Tobolar, J. and Hampl, J. (1973) The effect of some high-molecular polysaccharides on rheological properties of dough. Scientific Papers Inst. Chem. Technol. Prague E, pp. 41-61.

    Google Scholar 

  • Hoseney, R. C. (1984) Mixing and overmixing of dough. In International Symposium in Baking Science and Technology, Department of Grain Science and Industry, Kansas State University, Manhattan, HI-15.

    Google Scholar 

  • Hoseney, R.C. and Faubion, J.M. (1981) A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chem. 58, 421–479.

    Google Scholar 

  • Hoseney, R.C., Rao, H., Faubion, J. and Sidhu, J.S. (1980) Mixograph studies. IV. Mechanism by which lipoxygenase increases mixing tolerance. Cereal Chem., 57, 163–186.

    Google Scholar 

  • Kim, S.K. and D’Appolonia, B.L. (1977a) Bread staling studies. I. Effect of protein content on staling rate and bread crumb pasting properties, Cereal Chem., 54, 207.

    Google Scholar 

  • Kim, S.K. and D’Appolonia, B.L. (1977b) Bread staling studies. II. Effect of protein content and storage temperature on the role of starch, Cereal Chem., 54, 216.

    Google Scholar 

  • Krueger, J.E. and Lineback, D.R. (1987) Carbohydrate-degrading enzymes in cereals. In Enzymes and their Role in Cereal Technology, eds. Krueger, J.E., Lineback, D.R. and Stauffer, C.E., American Association of Cereal Chemists, St Paul, MN, p. 117.

    Google Scholar 

  • Kulp, K. (1968) Enzymolysis of pentosans of wheat flour. Cereal Chem., 45, 339–350.

    Google Scholar 

  • Kulp, K. (1975) Carbohydrases. In Enzymes in Food Processing, 2nd edn, ed Reed, G., Academic Press, pp. 53-122.

    Google Scholar 

  • Kulp, K. (1980) unpublished data.

    Google Scholar 

  • Kulp, K. (1986) Influence of liquid ferments on quality characteristics of white pan bread. Research Department Technical Bulletin 7(9), American Institute of Baking, Manhattan, KS.

    Google Scholar 

  • Kulp, K. and Ponte, J.G. Jr. (1981) Staling of white pan bread: fundamental causes. CRC Crit. Rev. Food Sci. Nutr., 15, 1.

    Article  Google Scholar 

  • Kulp, K., Olewnik, M. and Lorenz K. (1991) Starch functionality in cookie systems. Starch, 43(2), 153–157.

    Google Scholar 

  • Kuracina, T.A., Lorenz, K. and Kulp, K. (1987) Starch functionality as affected by amylases from different sources, Cereal Chem., 64, 182.

    Google Scholar 

  • Linko, Y.-Y. and Linko, P. (1986) Enzymes in baking. In Chemistry and Physics of Baking, eds. Blanshard, J.M.V., Frazier, P.J. and Galliard, T., The Royal Society, London, pp. 105–116.

    Google Scholar 

  • Maninder, M. and Joergensen, O.B. (1983) Interactions of starch and fungal alpha-amylase in breadmaking. Starch, 35, 419.

    Article  Google Scholar 

  • Martin, M.L. (1989) Rethinking bread firming. Ph.D. Dissertation, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 108 pp.

    Google Scholar 

  • Martin, M.L. and Hoseney, R.C. (1991a) A mechanism of bread firming. I. Role of starch swelling. Cereal Chem., 68, 498–503.

    Google Scholar 

  • Martin, M.L. and Hoseney, R.C. (1991b) A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem., 68, 503–507.

    Google Scholar 

  • Miller, B.S., Johnson, J.A. and Palmer, D.L. (1953) A comparison of cereal, fungal, and bacterial alpha-amylases as supplements for breadmaking, Food Technol., 7(1), 38–42.

    Google Scholar 

  • Monma, M., Yamamoto, Y., Kagei, N. and Kainuma, K. (1989) Raw starch digestion by alpha-amylase and glucoamylase from Chalara paradoxa. Starch, 41, 382.

    Article  Google Scholar 

  • Pazur, J. M. and Ando, T. (1960) The hydrolysis of glucosyl oligosaccharides with alpha-D-(1-4)-and alpha-D-(1-6)-bonds by fungal amyloglucosidase. J. Biol. Chem., 335, 297.

    Google Scholar 

  • Pazur, J.M. and Kleppe, K.T. (1962) The hydrolysis of alpha-D-glucosides by amyloglucosidase from Aspergillus niger. J. Biol. Chem., 237, 297.

    Google Scholar 

  • Perten, H. (1984) A modified falling-number method suitable for measuring both cereal and fungal alpha-activity. Cereal Chem., 61, 108–111.

    Google Scholar 

  • Pezoa, V., Kuehn, M.C. and Grosch, W. (1984) Einfluss von Hydrolases auf die Backeigenschaften von Roggenmehl. Getreide Mehl u. Brot, 38(4), 106–109.

    Google Scholar 

  • Pomeranz, Y., Rubenthaler, G. L. and Finney, K. F. (1964). Use of amyloglucosidase in breadmaking. Food Technol., 18, 138

    Google Scholar 

  • Ranum, P. and De Stefanis, V.A. (1990) Use of fungal alpha-amylase in milling and baking. Cereal Foods World, 35, 931–933.

    Google Scholar 

  • Rohrlich, M. W. and Hitze, W. (1970). Activitaet und Verteilung der Cellulase in reifenden Weizen und Roggen sowie der Alpha-Amylase in Keimung und Edosperm. Getreide und Mehl, 20, 17–24.

    Google Scholar 

  • Rubenthaler, G., Finney, K. F. and Pomeranz Y. (1965). Effects on loaf volume and bread characteristics of alpha-amylases from cereal, fungal, and bacterial sources. Food Technol., 19, 239.

    Google Scholar 

  • Saha, B.C. and Zeikus, J.G. (1989) Microbial glucoamylases: biochemical and biotechnical features. Starch, 41, 57.

    Article  Google Scholar 

  • Schoch, T.J. (1965) Starch in bakery products. Bakers Dig., 39(2), 48.

    Google Scholar 

  • Schoch, T.J. and French, D. (1947) Studies on bread staling. I. The role of starch. Cereal Chem., 24, 231.

    Google Scholar 

  • Shinke, R. (1988) Plant amylases (malt). In Handbook of Amylases and Related Enzymes, ed. The Amylase Research Society of Japan, Osaka, pp. 26-32.

    Google Scholar 

  • Sproesser, B. (1986) Bedeutung und Wirkungsweise von Enzymen bei der Backwarenherstellung, 34(3), 50–52.

    Google Scholar 

  • Stauffer, C.E. (1987a) Oxidases. In Enzymes and their Role in Cereal Technology, eds. Krueger, J.E., Lineback, D. and Stauffer, C.E., American Association of Cereal Chemists, St Paul, MN, pp. 239–263.

    Google Scholar 

  • Stauffer, C.E. (1987b) Proteases, peptidases and inhibitors. In Enzymes and their Role in Cereal Technology, eds. Krueger, J.E., Lineback, D. and Stauffer, C.E., American Association of Cereal Chemists, St Paul, MN, pp. 201–238.

    Google Scholar 

  • Stauffer, C.E. (1991) Enzymes as formulation tools. Baking and Snack, 10, 21–22, 24-25.

    Google Scholar 

  • Ueda, S. (1988) Glucoamylase. In Handbook of Amylases and Related Enzymes, ed. The Amylase Research Society of Japan, Osaka, pp. 116–117.

    Google Scholar 

  • Valjakka, T.-T. (1992) The effects of raw-starch digesting enzyme on white pan bread. M.Sc. Thesis, Department of Grain Science and Industry, Kansas State University, 111 pp.

    Google Scholar 

  • Wasserman, B.P. (1990) Evolution of enzyme technology: Progress and Prospects. Food Technol, 44, 118–122.

    Google Scholar 

  • Werne P. (1987) Dough additives, Pizza Today, 5(7), 30–31.

    Google Scholar 

  • Wu, J.Y. and Hoseney, R.C. (1989) Rheological changes in cracker sponges during an 18-hour fermentation. Cereal Chem., 5, 182–185.

    Google Scholar 

  • Yamamoto, T. (1988a) Alpha-amylase of Rhizopus niveus. In Handbook of Amylases and Related Enzymes, ed. The Amylase Research Society of Japan, Osaka, pp. 38–40.

    Google Scholar 

  • Yamamoto, T. (1988b) Bacterial alpha amylase (liquefying and saccharifying types) of Bacillus subtilis and related bacteria. In Handbook of Amylases and Related Enzymes, ed. The Amylase Research Society of Japan, Osaka, pp. 40–42.

    Google Scholar 

  • Young, J. and Nimmo, I. (1972) The oxidation of glutathione of glucose oxidase from Aspergillus. Biochem. J., 130, 33.

    Google Scholar 

  • Zobel, H.F. and Senti, F.R. (1959) The bread staling problem. X-ray diffraction studies in breads containing a cross-linked starch and heat-stable amylase, Cereal Chem., 36, 441–445.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kulp, K. (1993). Enzymes as dough improvers. In: Kamel, B.S., Stauffer, C.E. (eds) Advances in Baking Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7256-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7256-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7514-0055-7

  • Online ISBN: 978-1-4899-7256-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics