Skip to main content

Field-Ion Microscope Studies of Planar Faults

  • Chapter
Field-Ion Microscopy

Abstract

A perfect dislocation, i.e., its Burgers vector is a unit translation in the lattice, can dissociate into two or more partial dislocations separated by widths of stacking faults. The prerequisite for such a dissociation is that a mechanically stable new configuration should be available. The dissociation reaction leads to a lowering of the elastic energy of the perfect dislocation. This is balanced, however, by the increase in misfit energy in the plane. Several books on dislocations give an excellent treatment of these ideas.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press (London), 1953;

    Google Scholar 

  2. also W. T. Read, Dislocations in Crystals, McGraw-Hill (New York), 1953; and J. Friedel, Dislocations, Pergamon Press, (London), 1964.

    Google Scholar 

  3. Warren, B. E, Progr. Metal. Phys. 8: 147 (1959).

    Article  CAS  Google Scholar 

  4. G. Thomas, Transmission Electron Microscopy of Metals, Wiley (New York), 1962.

    Google Scholar 

  5. B. Ralph and D. G. Brandon, Phil. Mag. 8: 919 (1963).

    Article  CAS  Google Scholar 

  6. S. Ranganathan, K. M. Bowkett, J. Hren, and B. Ralph, Phil. Mag. 12: 841 (1965).

    Article  CAS  Google Scholar 

  7. H. F. Ryan and J. Suiter, J. Less-Common Metals 9: 258 (1965).

    Article  CAS  Google Scholar 

  8. S. Ranganathan, J. Less-Common Metals 10: 368 (1966).

    Article  CAS  Google Scholar 

  9. J. S. Hirschhorn, J. Less-Common Metals 5: 493 (1963).

    Article  CAS  Google Scholar 

  10. A. W. Sleeswyk, Phil. Mag. 8: 1467 (1963).

    Article  Google Scholar 

  11. J. B. Cohen, R. Hinton, K. Lay, and S. Sass, Acta Met. 10: 894 (1962).

    Article  CAS  Google Scholar 

  12. R. L. Segall, Acta Met. 9: 975 (1961).

    Article  Google Scholar 

  13. P. B. Hirsch and R. W. Segall, Substructure and Mechanical Properties of Crystals, WADD TR-61–181, 1961.

    Google Scholar 

  14. Y. Nakayama, S. Weissman, and T. Imura, in: Imperfections in Crystals, (Interscience) (New York), 1961, p. 573.

    Google Scholar 

  15. E. Votava, Acta Met. 10: 745 (1962).

    Article  CAS  Google Scholar 

  16. Moore, A. J. W, Phys. Chem. Solids 23: 907 (1962).

    Article  CAS  Google Scholar 

  17. Frank, F. C., Advan. Phys. 1: 91–109 (1952)

    Article  Google Scholar 

  18. S. Ranganathan, J. Appl. Phys. 37: 4346 (1966).

    Article  CAS  Google Scholar 

  19. Brandon, D. G, AIME Conf. High-Temperature High-Resolution Microscopy, Chicago, 1964.

    Google Scholar 

  20. Holland, B. W, Phil. Mag. 8: 87 (1963).

    Article  CAS  Google Scholar 

  21. D. G. Brandon, B. Ralph, S. Ranganathan, and M. Wald, Acta Met. 12: 813 (1964).

    Article  Google Scholar 

  22. Müller, E. W., Acta Met. 6: 620 (1958).

    Article  Google Scholar 

  23. S. Ranganathan, Third European Regional Conference on Electron Microscopy, Prague, 1964, p. 265.

    Google Scholar 

  24. E. W. Müller, Proc. Intern. Conf. Electron Microscopy, 4th, Berlin 1: 820 Springer Verlag (Berlin), 1958.

    Google Scholar 

  25. W. Carrington, K. F. Hale, and D. McLean, Proc. Roy. Soc. (London), A259: 203 (1960).

    Article  CAS  Google Scholar 

  26. Jones, F. O., J. Less-Common Metals 2: 163 (1960).

    Article  CAS  Google Scholar 

  27. Müller, E. W, Third European Regional Conference on Electron Microscopy, Prague, 1964, p. 161.

    Google Scholar 

  28. Müller, E. W., in: Direct Observations of Imperfections in Crystals, Wiley (Interscience) (New York) 1961, p. 77.

    Google Scholar 

  29. T. R. Anantharaman and J. W. Christian, Acta Cryst. 9: 479 (1956).

    Article  CAS  Google Scholar 

  30. Müller, E. W., Bull. Am. Phys. Soc. 7: 27 (1962).

    Google Scholar 

  31. B. Ralph and Brandon, D. G, Journées Int. des Applications du Cobalt, June 9–11, 1964, p. 76.

    Google Scholar 

  32. H. N. Southworth and B. Ralph, 13th Field-Emission Symposium, Cornell University, Ithaca, N.Y., 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ranganathan, S. (1968). Field-Ion Microscope Studies of Planar Faults. In: Hren, J.J., Ranganathan, S. (eds) Field-Ion Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6513-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6513-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6241-6

  • Online ISBN: 978-1-4899-6513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics