Skip to main content

Pulmonary Vascular Control Mechanisms

  • Chapter
ARDS Acute Respiratory Distress in Adults

Abstract

The important contribution of the pulmonary vasculature to the expression of acute lung injury was recognized in early clinical and experimental studies of the syndrome of acute respiratory distress in adults (ARDS). Acute pulmonary hypertension was shown to be an important early feature with adverse prognostic implications, and persistence of the hypertension was found to be associated with structural vascular changes. More recently, it has been recognized that there is also a profound loss of pulmonary and systemic reactivity, with substantial implications for lung defense, gas exchange, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kai, T. (1969) Distribution of adrenergic nerve fibers in the lungs of rabbit, guinea pig and man as demonstrated by Falck-Hillarp’s method. Bull. Chest Dis. Res.2, 225.

    CAS  Google Scholar 

  2. Partanen, M., Laitinen, A., Hervonen, A. et al. (1982) Catecholamine- and acteylcholinester-ase-containing nerves in human lower respiratory tract. Histochemistry, 76, 175–88.

    Article  PubMed  CAS  Google Scholar 

  3. Rudolph, A.M., Heyman, M.A. and Lewis, A.B. (1977) Physiology and pharmacology of the pulmonary circulation in the fetus and newborn, in Lung Biology in Health and Disease. Development of the Lung (ed. W.A. Hod-son), Marcel Dekker, New York, pp. 497–523.

    Google Scholar 

  4. Colebatch, H. J.H., Dawes, G.S., Goodwin, J.W. and Nadeau, R.A. (1965) The nervous control of the circulation in the foetal and newly expanded lungs of the lamb. J. Physiol., 178, 544–62.

    PubMed  CAS  Google Scholar 

  5. Malik, A.B. and Kidd, L. (1973) Adrenergic blockade and the pulmonary vascular response to hypoxia. Respir. Physiol., 19, 96–106.

    Article  PubMed  CAS  Google Scholar 

  6. Kubota, E., Hamasaki, Y., Sata, T. et al. (1988) Autonomic innvervation of pulmonary artery: evidence for a nonadrenergic noncho-linergic inhibitory system. Exp. Lung Res., 14, 349–58.

    Article  PubMed  CAS  Google Scholar 

  7. Maggi, C.A., Patacchini, R., Perretti, F. et al. (1990) Sensory nerves, vascular endothelium and neurogenic relaxation of the guinea-pig isolated pulmonary artery. Naunyn Schmiedebergs Arch. Pharmacol., 342, 78–84.

    Article  PubMed  CAS  Google Scholar 

  8. Scott, J.A. and McCormack, D.G. (1993) Nitric oxide is a mediator of non-adrenergic, non-cholinergic vasodilation of human pulmonary arteries. Can. Fed. Biol. Soc., A243, 89.

    Google Scholar 

  9. Liu, S.F., Crawley, D.E., Evans, T.W. and Barnes, P. J. (1992) Endothelium dependent nonadrenergic, noncholinergic neural relaxation in guinea pig pulmonary artery. J. Pharmacol. Exp. Ther., 260, 541–8.

    PubMed  CAS  Google Scholar 

  10. Barnes, P. J. (1986) Asthma as an axon reflex. Lancet, i: 242–5.

    Article  Google Scholar 

  11. Palmer, R.M. J., Ferrige, A.G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ignarro, L. J., Buga, G.M., Wood, K.S. et al. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sei. USA, 84, 9265–9.

    Article  CAS  Google Scholar 

  13. Palmer, R.M. J., Ashton, D.S. and Moncada, S. (1988) Vascular endothelial cells synthesise nitric oxide from l-arginine. Nature, 333, 664–6.

    Article  PubMed  CAS  Google Scholar 

  14. Palmer, R.M. J., Rees, D.D., Ashton, D.S. and Moncada, S. (1988) l-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun., 153, 1251–6.

    Article  PubMed  CAS  Google Scholar 

  15. Rees, D.D., Palmer, R.M. J., Hodson, H.F. and Moncada, S. (1989) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br. J. Pharmacol., 96, 418–24.

    Article  PubMed  CAS  Google Scholar 

  16. Persson, M.G., Gustafsson, L.E., Wiklund, N.P. et al. (1990) Endogenous nitric oxide as a modulator of rabbit skeletal muscle microcirculation in vivo. Br. J. Pharmacol., 100, 463–6.

    Article  CAS  Google Scholar 

  17. Rees, D.D., Palmer, R.M. J., Schulz, R. et al. (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol., 101, 746–52.

    Article  CAS  Google Scholar 

  18. Archer, S.L., Tolins, J.P., Raij, L. and Weir, E.K. (1989) Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem. and Biophys. Res. Commun., 164, 1198–205.

    Article  CAS  Google Scholar 

  19. Persson, M.G., Gustafsson, L.E., Wiklund, N.P et al. (1990) Endogenous nitric oxide as a probable modulator of pulmonary circulation and hypoxic pressor response in vivo. Acta Physiol. Scand., 140, 449–57.

    Article  CAS  Google Scholar 

  20. Greenberg, B., Rhoden, K. and Barnes, P. J. (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am. J. Physiol., 252, H434–8.

    Google Scholar 

  21. Crawley, D.E., Liu, S.F., Evans, T.W. and Barnes, P. J. (1990) Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries. Br. J. Pharmacol., 101, 166–70.

    Article  PubMed  CAS  Google Scholar 

  22. Beyne, J. (1942) Influence de l’anoxemie sur la grande circulation et sur la circulation pulmonaire. C.R. Soc. Biol. (Paris), 136, 399–400.

    Google Scholar 

  23. Marshall, C. and Marshall, B.E. (1983) Influence of perfusate Po 2 on hypoxic pulmonary vasoconstriction in rats. Circ. Res., 52, 691–6.

    Article  PubMed  CAS  Google Scholar 

  24. von Euler, U.S and Liljestrand, G. (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand., 12, 301–20.

    Article  Google Scholar 

  25. Wagner, W.W. Jr, Latham, L.P. and Capen, R.L. (1979) Capillary recruitment during airway hypoxia: role of pulmonary artery pressure. J. Appl. Physiol., 47, 383–7.

    PubMed  Google Scholar 

  26. Fishman, A.P., Fritts, H.W and Cournand, A. (1960) Effects of acute hypoxia and exercise on the pulmonary circulation. Circulation, 22, 204–15.

    Article  PubMed  CAS  Google Scholar 

  27. Silove, E.D. and Grover, R.F. (1968) Effects of alpha adrenergic blockade and tissue catecholamine depletion on pulmonary vascular response to hypoxia. J. Clin. Invest., 47, 274–85.

    Article  PubMed  CAS  Google Scholar 

  28. Lodato, R.F., Michael, J.R. and Murray, P.A. (1988) Absence of neural modulation of hypoxic pulmonary vasoconstriction in conscious dogs. J. Appl. Physiol., 65, 1481–7.

    PubMed  CAS  Google Scholar 

  29. Peake, M.D., Harabin, A.L., Brennan, N. J. and Sylvester, J.T. (1981) Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J. Appl. Physiol., 51, 1214–9.

    PubMed  CAS  Google Scholar 

  30. Robin, E.D., Theodore, J., Burke, C.M. et al. (1987) Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin. Sei., 72, 283–7.

    CAS  Google Scholar 

  31. Kato, M. and Staub, N.C. (1966) Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ. Res., 19, 426–40.

    Article  PubMed  CAS  Google Scholar 

  32. Hakim, T.S., Michel, R.P., Minami, H. and Chang, H.K. (1983) Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J. Appl. Physiol., 54, 1298–302.

    PubMed  CAS  Google Scholar 

  33. Nagasaka, Y., Bhattacharya, J., Nanjo, S. et al. (1984) Micropuncture measurement of lung microvascular pressure profile during hypoxia in cats. Cir. Res., 54, 90–5.

    Article  CAS  Google Scholar 

  34. Shirai, M., Sada, K. and Ninomiya, I. (1986) Effects of regional alveolar hypoxia and hypercapnia on small pulmonary vessels in cats. J. Appl. Physiol., 61, 440–8.

    PubMed  CAS  Google Scholar 

  35. Miller, D., Hamilton, J.T. and Paterson, N.A.M. (1989) The role of leukotrienes in hypoxic contractions of isolated porcine pulmonary artery and vein. Exp. Lung Res., 15, 213–22.

    Article  PubMed  CAS  Google Scholar 

  36. Raj, J.V. and Chen, P. (1986) Micropuncture measurement of microvascular pressures in isolated lamb lungs during hypoxia. Cir. Res., 59, 398–404.

    Article  CAS  Google Scholar 

  37. Paterson, N.A.M., Hamilton, J.T., Yaghi, A. et al. (1988) ERffect of hypoxia on responses of respiratory smooth muscle to histamine and LTD4. J. Appl. Physiol., 64, 435–40.

    PubMed  CAS  Google Scholar 

  38. Lloyd, T.C. (1968) Hypoxic pulmonary vasoconstriction: role of perivascular tissue. J. Appl. Physiol., 25, 560–5.

    PubMed  Google Scholar 

  39. Cutaia, M. and Rounds, S. (1990) Hypoxic pulmonary vasoconstriction: physiological significance, mechanism, and clinical relevance. Chest, 97, 706–18.

    Article  PubMed  CAS  Google Scholar 

  40. Fishman, A.P (1985) Pulmonary circulation, in Handbook of Physiology, (ed. S.R. Geiger), American Physiological Society, Bethesda, M.D., pp. 93–165.

    Google Scholar 

  41. Stenmark, K.R., James, S. J., Voelkel, N. et al. (1983) Leukotriene C4 and D4 in neonates with hypoxemia and pulmonary hypertension. N. Engl. J. Med., 309, 77–80.

    Article  PubMed  CAS  Google Scholar 

  42. Morganroth, M.L., Stenmark, K.R., Zirrolli, J.A. et al. (1984) Leukotriene C4 production during hypoxic pulmonary vasoconstriction in isolated rat lungs. Prostaglandins, 28, 867–5.

    PubMed  CAS  Google Scholar 

  43. Morganroth, M.L., Stenmark, K.R., Morris, K.G. et al. (1985) Diethylcarbamazine inhibits acute and chronic hypoxic vasoconstriction in awake rats. Am. Rev. Respir. Dis., 131, 488–92.

    PubMed  CAS  Google Scholar 

  44. Goldberg, R.N., Suguihara, C., Ahmed, T. et al. (1985) Influence of an antagonist of slow-reacting substance of anaphylaxis on the cardiovascular manifestations of hypoxia in piglets. Pediatr. Res., 19, 1201–5.

    Article  PubMed  CAS  Google Scholar 

  45. Raj, J.U. and Chen, P. (1987) Role of eicosa-noids in hypoxic vasoconstriction in isolated lamb lungs. Am. J. Physiol., 253, H626–33.

    Google Scholar 

  46. Schreiber, M.D., Heymann, M.A. and Soifer, S. J. (1985) Leukotriene inhibition prevents and reverses hypoxic pulmonary vasoconstriction in newborn lambs. Pediatr. Res., 19, 437–41.

    Article  PubMed  CAS  Google Scholar 

  47. Voelkel, N.F., Stenmark, K.R., Reeves, J.T. et al. (1984) Actions of lipoxygenase metabolites in isolated rat lungs. J. Appl. Physiol., 57, 860–7.

    PubMed  CAS  Google Scholar 

  48. Schnaar, R.L. and Sparks, H.V. (1972) Response of large and small coronary arteries to nitroglycerine, NaNO2, and adenosine. Am. J. Physiol., 223, 223–8.

    PubMed  CAS  Google Scholar 

  49. Gottlieb, J.E., McGeady, M. Adkinson, N.F. Jr and Sylvester, J.T. (1988) Effects of cycloand lipoxygenase inhibitors on hypoxic vasoconstriction in isolated ferret lungs. J. Appl. Physiol., 64, 936–43.

    Article  PubMed  CAS  Google Scholar 

  50. Lonigro, A. J., Sprague, R.S., Stephenson, A.H. and Dahms, T.E. (1988) Relationship of leuko-triene C4 and D4 to hypoxic pulmonary vasoconstriction. J. Appl. Physiol., 64, 2538–43.

    PubMed  CAS  Google Scholar 

  51. Leffler, C.W., Mitchell, J.A. and Green, R.S. (1984) Cardiovascular effects of leukotrienes in neonatal piglets. Cir. Res., 55, 780–7.

    Article  CAS  Google Scholar 

  52. Garrett, R.C., Foster, S. and Thomas, H.M. III. (1987) Lipoxygenase and cyclooxygenase blockade by BW 755c enhances pulmonary hypoxic vasoconstriction. J. Appl. Physiol., 62, 129–33.

    PubMed  CAS  Google Scholar 

  53. Rubin, L. J., Hughes, J.D. and Lazar, J.D. (1985) The effects of eicosanoid synthesis inhibitors on normoxic and hypoxic pulmonary vascular tone. Am. Rev. Respir. Dis., 132, 93–8.

    PubMed  CAS  Google Scholar 

  54. Schuster, D.P. and Dennis, D.R. (1987) Leukotriene inhibitors do not block hypoxic pulmonary vasoconstriction in dogs. J. Appl. Physiol., 62, 1808–13.

    Article  PubMed  CAS  Google Scholar 

  55. McCormack, D.G. and Paterson, N.A.M. (1989) The contrasting influence of two lipoxygenase inhibitors on hypoxic pulmonary vasoconstriction in anesthetized pigs. Am. Rev. Respir. Dis., 139, 100–5.

    Article  PubMed  CAS  Google Scholar 

  56. Thomas, H.M. III, Sourour, M.S., Lopez, D. and Foster, S.H. (1989) Antagonism of leuko-triene receptors and administration of a 5-lipoxygenase inhibitor do not affect hypoxic vasoconstriction. Lung, 167, 187–98.

    Article  PubMed  CAS  Google Scholar 

  57. Cassin, S., Gause, G., Davis, T. et al. (1989) Do inhibitors of lipoxygenase and cycloxygenase block neonatal pulmonary vasoconstriction? J. Appl. Physiol., 66, 1779–884.

    PubMed  CAS  Google Scholar 

  58. Kourembanas, S., Marsden, P.A., McQuillan, L.P. and Faller, D.V. (1991) Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest., 88, 1054–7.

    Article  PubMed  CAS  Google Scholar 

  59. De Mey, J.G. and Vanhoutte, P.M. (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lond.), 335, 65–74.

    Google Scholar 

  60. Muramatsu, M., Iwama, Y., Shimizu, K. et al. (1992) Hypoxia-elicited contraction of aorta and coronary artery via removal of endothe-lium-derived nitric oxide. J. Appl. Physiol., 263, H1339–47.

    Google Scholar 

  61. Holden, W.E. and McCall, E. (1984) Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp. Lung Res., 7, 101–12.

    Article  PubMed  CAS  Google Scholar 

  62. Rodman, D.M., Yamaguchi, T., O’Brien, R.F. and McMurtry, I.F. (1988) Hypoxic contraction of isolated rat pulmonary artery. J. Pharmacol. Exp. Ther., 248, 952–9.

    Google Scholar 

  63. Demiryurek, A.T., Wadsworth, R.M., Kane, K.A. and Peacock, A. J. (1993) The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am. Rev. Respir. Dis., 147, 283–90.

    Article  PubMed  CAS  Google Scholar 

  64. Zhao, Y., Packer, C.S. and Rhoades, R.A. (1992) Pulmonary vein contracts in response to hypoxia. Am. J. Physiol., 265, L87–92.

    Google Scholar 

  65. Ohe, M., Ogata, M., Katayose, D. and Takish-ima, T. (1992) Hypoxic contraction of pre-stretched human pulmonary artery. Respir. Physiol., 87, L05–14.

    Article  Google Scholar 

  66. Ogata, M., Ohe, M., Katayose, D. and Takish-ima, T. (1992) Modulatory role of EDRF in hypoxic contraction of isolated porcine pulmonary arteries. Am. J. Physiol., 262, H691–7.

    Google Scholar 

  67. Yuan, X.-J., Tod, M.L., Rubin, L. J. and Blaustein, M.P. (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol., 259, H281–9.

    Google Scholar 

  68. Weir, E.K. (1978) Does normoxic pulmonary vasodilatation rather than hypoxic vasoconstriction account for the pulmonary pressor response to hypoxia? Lancet, i, 476–7.

    Article  Google Scholar 

  69. Rodman, D.M., Yamaguchi, T., Hasunuma, K. et al. (1990) Effects of hypoxia on endothe-lium-dependent relaxation of rat pulmonary artery. Am. J. Physiol., 258, L207–14.

    Google Scholar 

  70. Johns, R.A., Linden, J.M. and Peach, M. J. (1989) Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ. Res., 65, 1508–15.

    Article  PubMed  CAS  Google Scholar 

  71. McCormack, D.G. and Paterson, N.A.M. (1993) Loss of hypoxic pulmonary vasocon-triction in chronic pneumonia is not mediated by nitric oxide. Am. J. Physiol., 265, H1523–8.

    Google Scholar 

  72. Liu, S., Crawley, D.E., Barnes, P. J. and Evans, T.W. (1991) Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am. Rev. Respir. Dis., 143, 32–7.

    Article  PubMed  CAS  Google Scholar 

  73. Oka, M., Hasunuma, K., Webb, S.A. et al. (1993) EDRF suppresses an unidentified vasoconstriction mechanism in hypertensive rat lungs. Am. J. Physiol., 264, L587–97.

    Google Scholar 

  74. Bansal, V., Toga, H. and Usha Raj, J. (1993) Tone dependent nitric oxide production in ovine vessels in vitro. Respir. Physiol.93, 249–60.

    Article  CAS  Google Scholar 

  75. Mazmanian, G.-M., Baudet, B., Brink, C. et al. (1989) Methylene blue potentiates vascular reactivity in isolated rat lungs. J. Appl. Physiol., 66, 1040–5.

    PubMed  CAS  Google Scholar 

  76. Brashers, V.L., Peach, M. J. and Rose, C.E. Jr (1988) Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation. J. Clin. Invest.82, 1495–502.

    Article  PubMed  CAS  Google Scholar 

  77. Madden, M.C., Vender, R.L. and Friedman, M. (1986) Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins, 31, 1049–62.

    PubMed  CAS  Google Scholar 

  78. Voelkel, N.F., Gerber, J.G., McMurtry, I.F. et al. (1981) Release of vasodilator prostaglandin, P.G.I.2 from isolated rat lung during vasoconstriction. Cir. Res.48, 207.

    Article  CAS  Google Scholar 

  79. Madden, J.A., Dawson, C.A. and Harder, D.R. (1985) Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol.59, 113–8.

    PubMed  CAS  Google Scholar 

  80. Murray, T.R., Chen, L., Marshall, B.E. and Macarak, E. J. (1990) Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. Mol Biol, 3, 457–65.

    Article  CAS  Google Scholar 

  81. Madden, J.A., Vadula, M.S. and Kurup, V.P. (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. Physiol.263, L384–93.

    Google Scholar 

  82. Harder, D.R., Madden, J.A. and Dawson, C. (1985) Hypoxic induction of Ca2 +-dependent action potentials in small pulmonary arteries of the cat. J. Appl. Physiol.59, 1389–93.

    PubMed  CAS  Google Scholar 

  83. Jin, N., Packer, C.S. and Rhoades, R.A. (1992) Pulmonary arterial hypoxic contraction: signal transduction. Am. J. Physiol.263, L73–8.

    Google Scholar 

  84. Hoshino, Y., Obara, H., Kusunoki, M. et al. (1988) Hypoxic contractile response in isolated human pulmonary artery: role of calcium ion. J. Appl. Physiol.65, 2468–74.

    PubMed  CAS  Google Scholar 

  85. Rodman, D.M., Yamaguchi, T., O’Brien, R.F. and McMurtry, I.F. (1989) Hypoxic contraction of isolated rat pulmonary artery. J. Pharmacol. Exp.248, 952–9.

    CAS  Google Scholar 

  86. McMurtry, I.F. (1985) Bay K8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am. Physiol.249, H741–6.

    Google Scholar 

  87. Salvaterra, C.G. and Goldman, W.F (1993) Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am. Physiol., 264; L323–8

    Google Scholar 

  88. Yuan, X.-J., Goldman, WF, Tod, ML et al. (1993) Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes, Am. J. Physiol., 264, L116–23.

    Google Scholar 

  89. Haynes, W.G. and Webb, D. J. (1993) The endothelin family of peptides: local hormones with diverse roles in health and disease? Clin. Sei, 84, 485–500.

    CAS  Google Scholar 

  90. Sirvio, M.L., Matsarinne, K., Saijonmaa, O. and Fyhrquist, F. (1990) Tissue distribution and half life of 125 I-endothelin in the rat: importance of pulmonary clearance. Biochem. Biophys. Res. Commun., 167; 1191–5.

    Article  PubMed  CAS  Google Scholar 

  91. Westcott, J.Y., Henson, J., McMurtry, I.F. and O’Brien, R.F. (1990) Uptake and metabolism of endothelin in the isolated perfused rat lung. Exp. Lung Res., 16 521–32.

    Article  PubMed  CAS  Google Scholar 

  92. Horgan, M. J., Pinheiro, J.M. and Malik, A.B. (1991) Mechanism of endothelin-1 induced pulmonary vasoconstriction. Circ. Res., 69; 157–64.

    Article  PubMed  CAS  Google Scholar 

  93. Wang, Y. and Coceani, F. (1992) Isolated pulmonary resistance vessels from fetal lambscontractile behavior and responses to indom-ethacin and endothelin-1. Circ. Res., 71; 320–30.

    Article  PubMed  CAS  Google Scholar 

  94. Lippton, H.L., Cohen, G.A., McMurtry, IF. and Hyman, A.L. (1991) Pulmonary vasodilation to endothelin isopeptides is mediated by potassium channel activation. J. Appl. Physiol., 70; 947–52.

    PubMed  CAS  Google Scholar 

  95. Lippton, H.L., Hauth, T.A., Cohen, G.A. and Hyman, A.L. (1993) Functional evidence for different endothelin receptors in the lung. J. Appl. Physiol., 75; 38–48.

    PubMed  CAS  Google Scholar 

  96. De Nucci, G., Thomas, R., D’Orleans-Juste, P. et al. Pressor effects of circulating endothelin are limited by its removal from the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc. Natl Acad. Sei. USA 85; 9797–800.

    Google Scholar 

  97. D’Orleans-Juste, P., Telemaque, S., Claing, A., et al. (1992) Human big-endothelin-1 and endothelin-1 release prostacyclin via the activation of ET1 receptors in the rat perfused lung. Br. J. Pharmacol., 105; 773–5.

    Article  PubMed  Google Scholar 

  98. Tod, M.L. and Cassin, S. (1992) Endothelin-1-induced pulmonary arterial dilation is reduced by Nw-nitro-L-arginine in fetal lambs. J. Appl. Physiol., 72; 1730–4.

    PubMed  CAS  Google Scholar 

  99. Namiki, A., Hirata, Y., Ishikawa, M. et al. Endothelin-1 and endothelin-3-induced vasorelaxation via common generation of endothelium-derived nitric oxide. Life Sei., 50; 677

    Google Scholar 

  100. Crawley, D.E., Liu, S.F., Barnes, P. J. and Evans, T.W. (1992) Endothelin-3 is a potent pulmonary vasodilator in the rat. J. Appl. Physiol., 72; 1425–31.

    PubMed  CAS  Google Scholar 

  101. Hirata, Y, Emori, T., Eguchi, S., et al. (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J. Clin. Invest., 91; 1367–73.

    Article  PubMed  CAS  Google Scholar 

  102. Inoue, A., Yanagisawa, M., Simura, S. et al. (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl Acad. Sei. USA, 86; 2863–7.

    Article  CAS  Google Scholar 

  103. Sibbald, W. J., Paterson, N.A.M., Holliday, R.L. et al. (1978) Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of passive factors. Chest, 73; 583–91.

    Article  PubMed  CAS  Google Scholar 

  104. Snapper, J.R., Bernard, G.R., Hinson, et al. (1993). Endotoxemia-induced leukopenia in sheep — correlation with lung vascular permeability and hypoxemia but not with pulmonary hypertension. Am. Rey. Respir. Dis.127; 306–9.

    Google Scholar 

  105. Dehring, D. J., Lowery, B.D., Flynn, J. et al. (1983) Indomethacin improvement of septic acute respiratory failure in a porcine model. J. Trauma, 23; 725–9.

    Article  PubMed  CAS  Google Scholar 

  106. Winn, R., Harlan, J., Nadir, B. et al. (1983) Thromboxane A2 mediates lung vasoconstriction but not permeability after endotoxin. J. Clin. Invest.72; 911–8.

    Article  PubMed  CAS  Google Scholar 

  107. Watkins, W.D., Huttemeier, P.C., Kong, D. and Peterson, M.B. (1982) Thromboxane and pulmonary hypertension following E. coli endotoxin infusion in sheep: effect of an imidazole derivative. Prostaglandins, 23; 273–85.

    PubMed  CAS  Google Scholar 

  108. Matthay, M.A., Eschenbacher, W.L. and Goet-zel, E. J. (1984) Elevated concentrations of leu-kotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. J. Clin. Immunol, 4; 479–83.

    Article  PubMed  CAS  Google Scholar 

  109. Ratnoff, W.D., Matthay, M.A., Wong, M.Y.S. et al. (1988) Sulfïdopeptide-leukotriene peptidases in pulmonary edema fluid from patients with the adult respiratory distress syndrome. J. Clin. Immunol, 8; 250–8.

    Article  PubMed  CAS  Google Scholar 

  110. Bernard, G.R., Korley, V., Chee, P. et al. (1991) Persistent generation of peptido leukotrienes in patients with the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 144, 263–7.

    Article  PubMed  CAS  Google Scholar 

  111. Coggeshall, J.W., Christman, B.W., Lefferts, P.L. et al. (1988) Effect of inhibition of 5-lipox-ygenase metabolism of arachidonic acid on response to endotoxemia in sheep. J. Appl. Physiol., 65; 1351–9.

    PubMed  CAS  Google Scholar 

  112. Olson, N.C., Dobrowsky, R.T. and Fleisher, L.N. (1987) Hydroxyeicosatetraenoic acids are increased in bronchoalveolar lavage fluid of endotoxemic pigs. Prostaglandins, 34; 493–503.

    PubMed  CAS  Google Scholar 

  113. Ogletree, M.L., Oates, J.A., Brigham, K.L. and Hubbard, W.C. (1982) Evidence for pulmonary release of 5-hydroxyeicosatetranoic acid (5-HETE) during endotoxemia in unanesthe-tized sheep. Prostaglandins, 23, 459–8.

    PubMed  CAS  Google Scholar 

  114. Hagmann, W., Denzlinger, C. and Keppler, D. Production of peptide leukotrienes in endotoxin shock. FEBS Lett., 180; 309–13.

    Google Scholar 

  115. Ahmed, T., Wasserman, M.A., Muccitelli, R., et al. (1986) Endotoxin-induced changes in pulmonary hemodynamics and respiratory mechanics — role of lipoxygenase and cycloox-ygenäse products. Am. Rev. Respir. Dis.134; 1149–57.

    PubMed  CAS  Google Scholar 

  116. Gross, D., Dahan, J.B., Landau, E.H. and Krausz, M.M. (1990) Effect of leukotriene inhibitor LY-171883 on the pulmonary response to Escherichia coli endotoxemia. Crit. Care Med., 18; 190–7.

    Article  PubMed  CAS  Google Scholar 

  117. Ahmed, T., Weichman, B., Wasserman, M.A. et al. (1988) Prevention and reversal of endotoxin-induced pulmonary hypertension by a leukotriene antagonist. Eur. Respir. J., 1; 145–52.

    PubMed  CAS  Google Scholar 

  118. Hamasaki, Y., Mojarad, M., Saga, T. et al. (1984) Platelet-activating factor raises airway and vascular pressures and induces edema in lungs perfused with platelet free solution. Am. Rev. Respir. Dis.129; 742–6.

    PubMed  CAS  Google Scholar 

  119. Christman, B.W., Lefferts, P.L., King, G.A. and Snapper, J.R. (1988) Role of circulating platelets and granulocytes in PAF-induced pulmonary dysfunction in awake sheep. J. Appl. Physiol.64; 2033–41.

    PubMed  CAS  Google Scholar 

  120. Burhop, K.E., van der Zee, H., Bisios, R. et al. (1986) Pulmonary vascular responses to platelet-activating factor in awake sheep and the role of cyclooxygenase metabolites. Am, Rev. Respir. Dis., 134; 548–54.

    CAS  Google Scholar 

  121. Doebber, T.W., Wu, M.S., Robbins, J.C. et al. (1985) Platelet activating factor involvement in endotoxin-induced hypotension in rats: studies with PAF-receptor antagonist kadsur-enone. Biochem. Biophys. Res. Commun.127; 799–808.

    Article  PubMed  CAS  Google Scholar 

  122. Christman, B.W, Lefferts, P.L., Blair, I.A. and Snapper, J.R. (1990) Effect of platelet-activating factor receptor antagonism on endotoxin-induced lung dysfunction in awake sheep. Am. Rev. Respir. Dis., 142; 1271–8.

    Article  Google Scholar 

  123. Sessler, C.N., Glauser, F.L., Davis, D. and Fowler, A.A.-III. Effects of platelet-activating factor antagonist SRI 63–441 on endotoxemia in sheep. J. Appl. Physiol., 65; 2624–31.

    Google Scholar 

  124. Hsueh, W., Gonzalez-Crussi, F. and Arroyave, J.L. (1986) Release of leukotriene C4 by isolated, perfused rat small intestine in response to platelet-activating factor. J. Clin. Invest.78; 108–14.

    Article  PubMed  CAS  Google Scholar 

  125. Mclntyre, T.M., Zimmerman, G.A. and Pre-scott, S.M. (1986) Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc. Natl Acad. Sei. USA, 83; 2304–8.

    Google Scholar 

  126. Morel, D.R., Lacroix, J.S., Hemsen, A. et al. (1989) Increased plasma and pulmonary lymph levels of endothelin during endotoxin shock. Eur. J. Pharmacol., 167; 427–8.

    Article  PubMed  CAS  Google Scholar 

  127. Pittet, J.F., Morel, D.R., Hemsen, A. et al. (1991) Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis. Ann. Surg., 213; 261–4.

    Article  PubMed  CAS  Google Scholar 

  128. Weitzberg, E., Lundberg, J.M. and Rudehill, A. (1991) Elevated plasma level of endothelin in patients with sepsis syndrome. Circ. Shock, 33; 222–7.

    PubMed  CAS  Google Scholar 

  129. Druml, W., Steltzer, H., Waldhausl, W. et al. (1993) Endothelin-1 in adult respiratory distress syndrome. Am. Rev. Respir. Dis., 148; 1169–73.

    Article  PubMed  CAS  Google Scholar 

  130. Fink, M.P., MacVittie, T. J. and Casey, L.C. (1984) Inhibition of prostaglandin synthesis restores normal hemodynamics in canine hyperdynamic sepsis. Ann. Surg., 200; 619–26.

    Article  PubMed  CAS  Google Scholar 

  131. Dantzker, D.R., Brook, C. J., Dehart, P. et al. (1979) Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 120; 1039–52.

    PubMed  CAS  Google Scholar 

  132. Light, R.B., Mink, S.N. and Wood, L.D.H. (1981) Pathophysiology of gas exchange and pulmonary perfusion in pneumococcal lobar pneumonia in dogs. I. Appl. Physiol., 50; 524–30.

    CAS  Google Scholar 

  133. Graham, L.M., Vasil, A., Vasil, M.L. et al. (1990) Decreased pulmonary vasoreactivity in an animal model of chronic Pseudomonas pneumonia. Am. Rev. Respir. Dis., 142; 221–9.

    Article  PubMed  CAS  Google Scholar 

  134. Newman, J.H., Loyd, J.E., English, D.K. et al. (1983) Effects of 100% oxygen on lung vascular function in awake sheep. J. Appl. Physiol.54; 1379–86.

    PubMed  CAS  Google Scholar 

  135. McCormack, D.G., Crawley, D., Barnes, P. J. and Evans, T.W. (1992) Bleomycin-induced acute lung injury in rats selectively abolishes hypoxic pulmonary vasoconstriction: evidence against a role for platelet-activating factor. Clin. Sel, 82, 259–64.

    CAS  Google Scholar 

  136. Martin, C.M., Yaghi, A., Sibbald, W. J. et al. (1993) Differential impairment of vascular reactivity of small pulmonary and systemic arteries in hyperdynamic sepsis. Am. Rev. Respir. Dis.148; 164–72.

    Article  PubMed  CAS  Google Scholar 

  137. Yaghi, A., Paterson, N.A.M. and McCormack, D.G. (1993) Nitric oxide does not mediate the attenuated pulmonary vascular reactivity of chronic pneumonia. Am. J. Physiol., 265; H943–8.

    Google Scholar 

  138. Crawley, D.E., Zhao, L., Giembycz, M.A. et al. (1992) Chronic hypoxia impairs soluble gua-nylyl cyclase-mediated pulmonary arterial relaxation in the rat. Am. J. Physiol., 263, L325–32.

    Google Scholar 

  139. Eddahibi, S., Adnot, S., Carville, C. et al. (1992) L-Arginine restores endothelium-dependent relaxation in pulmonary circulation of chronically hypoxic rats. Am. J. Physiol., 263; L194–200.

    Google Scholar 

  140. Dinh-Xuan, A.T., Higenbottam, T.W., Clel-land, C.A. et al. (1991) Impairment of endo-thelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N. Engl. J. Med., 324; 1539–47.

    Article  PubMed  CAS  Google Scholar 

  141. Parratt, J.R. and Sturgess, R.M. (1975) E. coli endotoxin shock in the cat: treatment with indomethacin. Br. J. Pharmacol., 53; 485–8.

    Article  PubMed  CAS  Google Scholar 

  142. Light, R.B. (1986) Indomethacin and acetylsalicylic acid reduce intrapulmonary shunt in experimental pneumococcal pneumonia. Am. Rev. Respir. Dis., 134; 520–5.

    PubMed  CAS  Google Scholar 

  143. Hanly, P., Sienko, A. and Light, R.B. (1987) Effect of cyclooxygenase blockade on gas exchange and hemodynamics in Pseudomonas pneumonia. J. Appl. Physiol., 63; 1829–36.

    PubMed  CAS  Google Scholar 

  144. Heuer, H.O., Darius, H., Lohmann, H.F. et al. (1991) Platelet-activating factor type activity in plasma from patients with septicemia and other diseases. Lipids, 26; 1381–5.

    Article  PubMed  CAS  Google Scholar 

  145. Tracey, K. J., Stephen, F.L. and Cerami, A. (1988) Cachetin/TNFa in septic shock and septic adult respiratory distress syndrome. Am. Rev. Respir. Dis., 138; 1377–9.

    Article  PubMed  CAS  Google Scholar 

  146. Beasley, D., Cohen, R.A. and Levinsky, N.G. (1989) Interleukin-1 inhibits contraction of vascular smooth muscle. J. Clin. Invest.83; 331–5.

    Article  PubMed  CAS  Google Scholar 

  147. Hanly, P. J., Dobson, K., Roberts, D. and Light, R.B. (1987) Effect of indomethacin on arterial oxygenation in critically ill patients with severe bacterial pneumonia. Lancet i, 351–4.

    Article  Google Scholar 

  148. Julou-Schaeffer, G., Gray, G.A., Fleming, I. et al. (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am. J. Physiol., 259; H1038–43.

    Google Scholar 

  149. Kilbourn, R.G. and Griffith, O.W. (1992) Overproduction of nitric oxide in cytokine-medi-ated and septic shock. J. Natl Cancer Inst., 84, 827–31.

    Article  PubMed  CAS  Google Scholar 

  150. Wright, C.E., Rees, D.D. and Moncada, S. (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc. Res., 26; 48–57.

    Article  PubMed  CAS  Google Scholar 

  151. Auguet, M., Lonchampt, M.O., Delaflotte, S. et al. (1992) Induction of nitric oxide synthase by lipoteichoic acid from staphylococcus aureus in vascular smooth muscle cells. FEB S Lett., 297; 183–5.

    Article  CAS  Google Scholar 

  152. Busse, R. and Mulsch, A. (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett., 275; 87–90.

    Article  PubMed  CAS  Google Scholar 

  153. Sato, K., Miyakawa, K., Takeya, M. et al. (1995) Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in reversible endotoxic shock studied by a novel monoclonal antibody against rat iNOS. J. Leu-koc. Bioc, 57; 36–44

    CAS  Google Scholar 

  154. Horn, G., Grant, S., Wolfe, G. et al. (1995) Lipopolysaccharide-induced hypotension and vascular hyporeactivity in the rat: tissue analysis of nitric oxide synthase mRNA and protein expression in the presence and absence of dexamethasone, NG-monomethyl-L-arginine or indomethacin. J. Pharmacol. Exp. Ther. , 272, 452–9.

    Google Scholar 

  155. Holcroft, J.W., Vassar, M. J. and Weber, C. J. Prostaglandin E1 and survival in patients with the adult respiratory distress syndrome. Ann. Surg., 85; 371–8.

    Google Scholar 

  156. Melot, C., Lejeune, P., Leeman, M. et al. (1989) Prostaglandin E2 in the adult respiratory distress syndrome. Am. Rev. Respir. Dis.139; 106.

    Article  PubMed  CAS  Google Scholar 

  157. Bone, R.C., Slotman, G., Maunder, R. et al. (1989) Randomized double-blind, multicenter study of prostaglandin E1 in patients with the adult respiratory distress syndrome. Chest, 96, 114–9.

    Article  PubMed  CAS  Google Scholar 

  158. Sibbald, W. J., Driedger, A.A., McCallum, D. et al. (1986) Nitroprusside infusion does not improve biventricular performance in patients with acute hypoxemic respiratory failure. J. Crit. Care, 1, 197–203.

    Article  Google Scholar 

  159. Melot, C., Naeije, R., Mois, P. et al. (1987) Pulmonary vascular tone improves pulmonary gas exchange in the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 138, 1232–6.

    Article  Google Scholar 

  160. Frosteil, C., Fratacci, M.D., Wain, J.C. et al. (1991) Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation, 83, 2038–47.

    Article  Google Scholar 

  161. Rossaint, R., Falke, K. J., Lopez, F. et al. (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. Engl. J. Med., 328, 399–405.

    Article  CAS  Google Scholar 

  162. Berger, J.I., Gibson, R.L., Redding, G. J. et al. (1993) Effect of inhaled nitric oxide during group B streptococcal sepsis in piglets. Am. Rev. Respir. Dis., 147, 1080–6.

    Article  PubMed  CAS  Google Scholar 

  163. Weitzberg, E., Rudehill, A. and Lundberg, J.M. (1993) Nitric oxide inhalation attenuates pulmonary hypertension and improves gas exchange in endotoxin shock. Eur. J. Pharmacol., 233, 85–94.

    Article  PubMed  CAS  Google Scholar 

  164. Abman, S.H., Kinsella, J.P., Schaffer, M.S. and Wilkening, R.B. (1993) Inhaled nitric oxide in the management of a premature newborn with severe respiratory distress and pulmonary hypertension. Pediatrics, 92, 606–9.

    PubMed  CAS  Google Scholar 

  165. Haydar, A., Mauriat, P., Pouard, P. et al. (1992) Inhaled nitric oxide for postoperative pulmonary hypertension in patients with congenital heart defects. Lancet, 340, 8834–5.

    Article  Google Scholar 

  166. Rich, G.F., Murphy, G.D., Roos, C.M. and Johns, R.A. (1993) Inhaled nitric oxide — selective pulmonary vasodilation in cardiac surgical patients. Anesthesiology, 78, 1028–35.

    Article  PubMed  CAS  Google Scholar 

  167. Walmrath, D., Schneider, T., Pilch, J. et al. (1993) Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet, 342, 961–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paterson, N.A.M., McCormack, D.G. (1996). Pulmonary Vascular Control Mechanisms. In: Evans, T.W., Haslett, C. (eds) ARDS Acute Respiratory Distress in Adults. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3430-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3430-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-56910-4

  • Online ISBN: 978-1-4899-3430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics