Skip to main content

Clinical positron emission tomography

  • Chapter
Clinical Nuclear Medicine

Abstract

The clinical indications for positron emission tomography (PET) have increased dramatically in the past few years. Although PET continues to have a major role in patients with neurological, psychiatric and cardiovascular diseases, the area of most rapid growth has been oncology. 18F-fluorodeoxyglucose (FDG) is the radiopharmaceutical most often used in patients with cancer, but a variety of peptides, amino acids, enzymes and proteins, which bind to specific recognition sites or receptors on cancer cells have been successfully labelled and are proving useful. Many studies now demonstrate that PET, and SPECT, reduce the overall cost of medical care, because they increase the certainty of diagnosis and clinical stage of disease, and therefore eliminate the expense of unnecessary or unproductive testing or treatment. These studies are also very useful in planning and monitoring treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engel, J. Jr, Lubens, P., Kuhl, D.E. and Phelps, M.E. (1985) Local cerebral metabolic rate for glucose during petit mal absences. Ann. Neurol., 17, 121–8.

    Article  PubMed  Google Scholar 

  2. Frost, J.J. and Mayberg, H.S. (1995) Epilepsy, in Principles of Nuclear Medicine, Second Edition (eds H.N. Wagner, Jr, Z. Szabo and J.W. Buchanan), W.B. Saunders Co., Philadelphia, pp. 564–73.

    Google Scholar 

  3. Kuhl, D.E., Phelps, M.E., Markham, C.E. et al. (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by FDG and computed tomographic scan. Ann. Neurol., 12, 425–34.

    Article  PubMed  CAS  Google Scholar 

  4. Kuwert, T., Lange, H.W., Langen, K.J., Herzog, H., Aulich, A. and Feinendegen, L.E. (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain, 113, 1405–23.

    Article  PubMed  Google Scholar 

  5. Heiss, W.-D. and Podreka, I. (1995) Cerebrovascular disease, in Principles of Nuclear Medicine, Second Edition (eds H.N. Wagner, Jr, Z. Szabo and J.W. Buchanan), W.B. Saunders Co., Philadelphia, pp. 564–73.

    Google Scholar 

  6. Lee, M.C., Wagner, H.N., Tanada, S., Frost, J.J., Bice, A.N. and Dannais, R.F. (1988) Duration of occupancy of opiate receptors by naltrexone. J. Nucl. Med., 29, 1207–11.

    PubMed  CAS  Google Scholar 

  7. Patz, E.J., Lowe, V.J., Hoffman, J.M., Paine, S.S., Burrowes, P., Coleman, R.E. and Goodman, P.C. (1993) Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology, 188, 487–90.

    PubMed  Google Scholar 

  8. Lowe, V.J., DeLong, D.M., Hoffman, J.M. and Coleman, R.E. (1995) Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J. Nucl Med., 36, 883–7.

    PubMed  CAS  Google Scholar 

  9. Patronas, N.J., Di Chiro, G., Brooks, R.A. et al. (1982) Work in progress. 18F-fluorodeoxyglucose and PET in the evaluation of radiation necrosis of the brain. Radiology, 144, 885–9.

    PubMed  CAS  Google Scholar 

  10. Glantz, M.J., Hoffman, J.M., Coleman, R.E. et al. (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann. Neurol., 29, 347–55.

    Article  PubMed  CAS  Google Scholar 

  11. Kameyama, M., Shirane, R., Itoh, J. et al. (1990) The accumulation of 11C -methionine in cerebral glioma patients studied with PET. Acta Neurochir., 104, 8–12.

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa, T., Kanno, I., Shishido, F. et al. (1991) Clinical value or PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol, 32, 197–202.

    Article  PubMed  CAS  Google Scholar 

  13. Conti, P.S. (1995) Brain and Spinal Cord, In Principles of Nuclear Medicine, Second Edition (eds H.N. Wagner Jr, Z. Szabo and J.W. Buchanan), W.B. Saunders Co., Philadelphia, pp. 1041–54.

    Google Scholar 

  14. Muhr, C., Bergstrom, M., Lundberg, P.O. et al. (1986) Dopamine receptors in pituitary adenomas: PET visualization. J. Comput. Assist. Tomogr., 10, 175–80.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner, H.N. Jr and Conti, P.A. (1991) Advances in medical imaging for cancer diagnosis and treatment. Cancer, 67, 1121–8.

    Article  PubMed  Google Scholar 

  16. McGuire, A.H., Dehdashti, F., Siegel, B.A., Lyss, A.P., Brodack, J.W., Mathias, C.J., Mintun, M.A., Katzenellenbogen, J.A. and Welch, M.J. (1991) Positron tomographic assessment of 16-(18F)fluoro-17-estradiol uptake in metastatic breast carcinoma. J. Nucl Med., 32, 1526–31.

    PubMed  CAS  Google Scholar 

  17. Flanagan, F.L., Dehdashti, F., Mortimer, J.E., Siegel, B.A., Jonson, S. and Welch, M.J. (1996) PET assessment of response to tamoxifen therapy in patients with metastatic breast cancer. J. Nucl. Med., 37(Suppl.), 99P.

    Google Scholar 

  18. Young, H., Carnochan, P., Trivedi, M., Potter, G.A., Eccles, S.A., Haynes, B.P., Jarman, M. and Ott, R.J. (1995) Pharmacokinetics and biodistribution of radiolabelled idoxifene: prospects for the use of PET in the evaluation of a novel antioestrogen for cancer therapy. Nucl Med. Biol., 22(4), 405–11.

    Article  PubMed  CAS  Google Scholar 

  19. Inoue, T., Yang, D.J., Oriuchi, N., Wallace, S., Buzdar, A., Tansey, W., Kim, E.E., Cherif, A., Kuang, L.-R. and Podoloff, D.A. (1996) Positron emission tomography with F-18 fluorotamoxifen in patients with breast cancer. J. Nucl. Med., 37(Suppl.), 86P.

    Google Scholar 

  20. Kole, A.C., Nieweg, O.E., Pruim, J., Hoekstra, H.J., Plukker, J.Th.M., Paans, A.M.J., Koops, S.H. and Vaalburg, W. (1996) L-1-[11C]-Tyrosine, a better PET tracer for breast cancer: visualization and quantification of metabolism. J. Nucl. Med., 37(Suppl.), 86P.

    Google Scholar 

  21. Strauss, L.G. and Conti, P.S. (1991) The applications of PET in clinical oncology. J. Nucl. Med., 32, 623–48.

    PubMed  CAS  Google Scholar 

  22. Valk, P.E., Abella-Columna, E., Tesar, R.D., Pounds, T.R., Haseman, M.K. and Myers, R.W. (1996) Diagnostic accuracy and cost-effectiveness of whole-body PET-FDG imaging in recurrent colorectal cancer. J. Nucl. Med., 37(Suppl.), 132P.

    Google Scholar 

  23. Hustinx, R., Paulus, P., Daenen, F., Jerusalem, G., Jacquet, N. and Rigo, P. (1996) PET imaging of liver metastases: a retrospective study. J. Nucl. Med., 37(Suppl.), 250P.

    Google Scholar 

  24. Kuhl, D.E., Metter, E.J., Riege, W.H. et al. (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia and Alzheimer’s disease. J. Cereb. Blood Flow Metab., 3(Suppl. 1), S494–5.

    Google Scholar 

  25. Minosnima, S., Giordani, B.L., Berent, S., Frey, K.A., Foster, N.L. and Kuhl, D.E. (1996) The posterior cingulate cortex: the earliest metabolic reduction in Alzhleimer’s disease as revealed by PET. J. Nucl. Med., 37(Suppl.), 163P.

    Google Scholar 

  26. Small, G.W., Saxena, G.W., Mazziotta, J.C. et al. (1996) Strategies using PET for early detection of Alzheimer’s disease. J. Nucl. Med., 37(Suppl.), 79P.

    Google Scholar 

  27. Kushner, M., Reivich, M., Fieschi, C., Silver, F., Chawluk, J., Rosen, M., Greenberg, J., Burke, A. and Alavi, A. (1987) Metabolic and clinical correlates of acute ischemic infarction. Neurology, 37, 1103–10.

    Article  PubMed  CAS  Google Scholar 

  28. Kuhl, D.E., Engel, J., Jr, Phelps, M.E. and Selin, C. (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol., 8, 348–60.

    Article  PubMed  CAS  Google Scholar 

  29. Yano, Y., Budinger, T.F., Chiang, G., O’Brien, H.A. and Grant, P.M. (1979) Evaluation and application of alumina-based Rb-82 generators charged with high levels of Sr-82/85. J. Nucl. Med., 20, 961–6.

    PubMed  CAS  Google Scholar 

  30. Yano, Y., Cahoon, J.L. and Budinger, T.F. (1981) A precision flow-controlled Rb-82 generator for bolus or constant-infusion studies of the heart and brain. J. Nucl. Med., 22, 1006–10.

    PubMed  CAS  Google Scholar 

  31. Syrota, A., Merlet, P. and Delforge, J. (1995) Cardiac neurotransmission, in Principles of Nuclear Medicine, Second Edition (eds H.N. Wagner Jr, Z. Szabo and J.W. Buchanan), W.B. Saunders Co., Philadelphia, pp. 759–73.

    Google Scholar 

  32. Schwaiger, M. and Ziegler, S. (1996) Cardiac application of positron emission tomography, in Diagnostic Nuclear Medicine, Third Edition (eds M.P. Sandler, R.E. Coleman, F.J.Th. Wackers, J.A. Patton, A. Gottschalk and P.B. Hoffer), Williams and Wilkins, Baltimore, pp. 517–42.

    Google Scholar 

  33. Lown, B. (1979) Sudden cardiac death: the major challenge confronting contemporary cardiology. Am. J. Cardiol, 43, 313–28.

    Article  PubMed  CAS  Google Scholar 

  34. Reunanen, A., Aromaa, A., Pyorala, X., Punsar, S., Maatela, J. and Knekt, P. (1983) The Social Insurance Institution’s coronary heart disease study: baseline data and 5-year mortality experience. Acta Med. Scand., Suppl. 673, 67–81.

    Google Scholar 

  35. Kannel, W.B. and Abbott, R.D. (1984) Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham Study. N. Engl. J. Med., 311, 1114–7.

    Article  Google Scholar 

  36. Jones, R.H., McEwan, P., Newam, G.E. et al. (1981) Accuracy of diagnosis of coronary artery disease by measurement of left ventricular function during rest and exercise. Circulation, 64, 586–601.

    Article  PubMed  CAS  Google Scholar 

  37. Gould, K.L., Goldstein, R.A., Mullani, N.A. et al. (1986) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J. Am. Coll. Cardiol, 7, 775–89.

    Article  PubMed  CAS  Google Scholar 

  38. Tamaki, N., Yonekura, Y., Senda, M. et al. (1985) Myocardial positron computed tomography with 13N-ammonia at rest and during exercise. Eur. J. Nucl. Med., 1(1), 246–51.

    Article  Google Scholar 

  39. Gould, K.L. (1978) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacological coronary vasodilation. I. Am. J. Cardiol, 41, 267–8.

    Article  PubMed  CAS  Google Scholar 

  40. Schwaiger, M., Brunken, R., Grover-McKay, M., Krivokapich, J., Child, J., Tillisch, J.H., Phelps, M.E. and Schelbert, H.R. (1986) Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J. Am. Coll. Cardiol, 8, 800–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wagner, H.N., Buchanan, J.W., Maisey, M.N. (1998). Clinical positron emission tomography. In: Maisey, M.N., Britton, K.E., Collier, B.D. (eds) Clinical Nuclear Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3356-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3356-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-75180-6

  • Online ISBN: 978-1-4899-3356-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics