Skip to main content

Psychiatric disorders

  • Chapter
Clinical Nuclear Medicine
  • 136 Accesses

Abstract

The nuclear medicine techniques of positron emission tomography (PET) and single-photon emission tomography (SPECT) are powerful tools for the in vivo elucidation of the neurochemistry and aetiology of neuropsychiatric disorders. Both have played a major role in the advancement of psychopharmacology of psychiatric disorders. It is now over 20 years since functional neuroimaging (using 133Xe inhalation) first contributed to the debate about pathophysiological mechanisms in schizophrenia [1]. Since then, there has been a plethora of studies in neuropsychiatry, with the PET and SPECT techniques playing a central role. New techniques such as multiple organs coincidence counter [2], and ligands for specific receptor subtypes, are likely to increase the application of nuclear medicine in the development of new pharmacotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ingvar, D.H. and Franzen, G. (1974) Abnormalities of cerebral blood flow in patients with chronic schizophrenia. Acta Psychiatr. Scand., 50, 425–62.

    Article  PubMed  CAS  Google Scholar 

  2. Malizia, A., Forse, G., Haida, A. et al. (1995) A new human (psycho)pharrnacology tool: the multiple organs coincidences counter (MOCC). J. Psychopharmacol., 9, 294–306.

    Article  PubMed  CAS  Google Scholar 

  3. Jones, T. (1996) The role of PET within the spectrum of medical imaging. Eur. J. Nucl. Med., 23, 207–11.

    Article  PubMed  CAS  Google Scholar 

  4. DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H. et al. (1985) Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients. Am. J. Psychiatry, 142, 78–81.

    PubMed  CAS  Google Scholar 

  5. Wolkin, A., Angrist, B., Wolf, A.P. et al. (1988) Low frontal glucose utilization in chronic schizophrenia: a replication study. Am. J. Psychiatry, 145, 251–3.

    PubMed  CAS  Google Scholar 

  6. Andreasen, N.C., Rezai, K., Alliger, R. et al. (1992) Hypofrontality in neuroleptic naive patients and in patients with chronic schizophrenia. Arch. Gen. Psychiatry, 49, 943–58.

    Article  PubMed  CAS  Google Scholar 

  7. Sheppard, G., Gruzelier, J., Manchanda, R. et al. (1983) 15O Positron emission tomographic scanning in predominantly never-treated acute schizophrenic patients. Lancet, ii, 1448–52.

    Article  Google Scholar 

  8. Szechtman, H., Nahmias, C., Garnett, S. et al. (1988) Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Arch. Gen. Psychiatry, 45, 523–32.

    Article  PubMed  CAS  Google Scholar 

  9. Cleghorn, J.M., Garnett, E.S., Nahmias, C. et al. (1989). Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res., 28, 119–33.

    Article  PubMed  CAS  Google Scholar 

  10. Ebmeier, K.P., Blackwood, D.H.R., Murray, C. et al. (1993) Single photon emission tomography with 99mTc-exametazine in unmedicated schizophrenia patients. Biol. Psychiatry, 33, 487–95.

    Article  PubMed  CAS  Google Scholar 

  11. Gur, R.E., Resnick, S.M., Alavi, A. et al. (1987) Regional brain function in schizophrenia. Arch. Gen. Psychiatry, 44, 119–29.

    Article  PubMed  CAS  Google Scholar 

  12. Volkow, N.D., Brodie, J.D., Wolf, A.P. et al. (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. J. Neurol. Neurosurg. Psychiatry, 49, 1199–202.

    Article  PubMed  CAS  Google Scholar 

  13. Wolkin, A., Sanfilipo, M., Duncan, E. et al. (1996) Blunted change in cerebral glucose utilization after haloperidol treatment in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry, 153, 346–54.

    PubMed  CAS  Google Scholar 

  14. Weinberger, D.R., Berman, K.F. and Zec, R.F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch. Gen. Psychiatry, 43, 114–24.

    Article  PubMed  CAS  Google Scholar 

  15. Berman, K.F., Zec, R.F. and Weinberger, D.R. (1988) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch. Gen. Psychiatry, 43, 126–35.

    Article  Google Scholar 

  16. Frith, C.D., Friston, K.J., Herold, S. et al. (1995) Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br. J. Psychiatry, 167, 343–9.

    Article  PubMed  CAS  Google Scholar 

  17. Dolan, R.J., Fletcher, P., Frith, C.D. et al. (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180–2.

    Article  PubMed  CAS  Google Scholar 

  18. Buchsbaum, M.S., Haier, R.J., Potkin, S.G. et al. (1992) Fronto-striatal disorder of cerebral metabolism in never medicated schizophrenics. Arch. Gen. Psychiatry, 49, 935–42.

    Article  PubMed  CAS  Google Scholar 

  19. Buchsbaum, M.S., Potkin, S.G., Siegel, B.V. et al. (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch. Gen. Psychiatry, 49, 966–74.

    Article  PubMed  CAS  Google Scholar 

  20. Resnick, S.M., Gur, R.E., Alavi, A. et al. (1988) Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Res. Neuroimaging, 24, 1–11.

    Article  CAS  Google Scholar 

  21. Early, T.S., Reiman, E.M., Raichle, M.E. and Spitznagel, E.L. (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc. Natl. Acad. Sci. USA, 84, 561–3.

    Article  PubMed  CAS  Google Scholar 

  22. DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H. et al. (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol. Psychiatry, 25, 835–51.

    Article  PubMed  CAS  Google Scholar 

  23. Wolkin, A., Jaeger, J., Brodie, J.D. et al. (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am. J. Psychiatry, 142, 564–71.

    PubMed  CAS  Google Scholar 

  24. Friston, K.J., Liddle, P.F., Frith, C.D. et al. (1992) The left medial temporal region and schizophrenia. Brain, 115, 367–82.

    Article  PubMed  Google Scholar 

  25. Busatto, G.F., Costa, D.C., Ell, P.J. et al. (1994) Regional cerebral blood flow (rCBF) in schizophrenia during verbal memory activation: a 99mTc-HMPAO single photon emission tomography (SPET) study. Psychol. Med., 24, 463–72.

    Article  PubMed  CAS  Google Scholar 

  26. Liddle, P.F., Friston, K.J., Frith, C.D. et al. (1992) Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry, 160, 179–86.

    Article  PubMed  CAS  Google Scholar 

  27. Cleghorn, J.M., Franco, S., Szechtman, B. et al. (1992) Toward a brain map of auditory hallucinations. Am. J. Psychiatry, 149, 1062–9.

    PubMed  CAS  Google Scholar 

  28. McGuire, P.K., Shah, G.M.S. and Murray, R.M. (1993) Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet, 342, 703–6.

    Article  PubMed  CAS  Google Scholar 

  29. Silbersweig, D.A., Stern, E., Frith, C. et al. (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–9.

    Article  PubMed  CAS  Google Scholar 

  30. Wong, D.F., Wagner, H.N., Tune, L.E. et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–63.

    Article  PubMed  CAS  Google Scholar 

  31. Tune, L.E., Wong, D.F., Pearlson, G. et al. (1993) Dopamine D2 receptor density estimated in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatry Res., 49, 219–37.

    Article  PubMed  CAS  Google Scholar 

  32. Farde, L., Eriksson, L., Blomqvist, G. and Halldin, C. (1989) Kinetic analysis of central [HC] raclopride binding to D2 dopamine receptors studied by PET — A comparison to the equilibrium analysis. J. Cereb. Blood Flow Metab., 9, 696–708.

    Article  PubMed  CAS  Google Scholar 

  33. Martinot, J.L., Peron Magnan, P., Huret, J.D. et al. (1990) Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br] bromospiperone in untreated schizophrenic patients. Am. J. Psychiatry, 147, 44–50.

    PubMed  CAS  Google Scholar 

  34. Pilowsky, L.S., Costa, D.C., Ell, P.J. et al. (1994) D2 receptor binding in the basal ganglia of antipsychotic free schizophrenic patients — a 123IIBZM single photon emission tomography (SPET) study. Br. J. Psychiatry, 164, 16–26.

    Article  PubMed  CAS  Google Scholar 

  35. Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C. et al. (1994) Central D2 receptors and negative symptoms of schizophrenia. Br. J. Psychiatry, 164, 27–34.

    Article  PubMed  CAS  Google Scholar 

  36. Farde, L., Nordstrom, A.-L., Wiesel, F.-A. et al. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch. Gen. Psychiatry, 49, 538–44.

    Article  PubMed  CAS  Google Scholar 

  37. Nordstrom, A.-L., Farde, L., Wiesel, F.-A. et al. (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects: a double blind PET study of schizophrenic patients. Biol. Psychiatry, 33, 227–35.

    Article  PubMed  CAS  Google Scholar 

  38. Coppens, H.J., Sloof, C.J., Paans, A.M.J. et al. (1991). High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapeutic resistant schizophrenic patients. Biol. Psychiatry, 29, 629–34.

    Article  PubMed  CAS  Google Scholar 

  39. Pilowsky, L.S., Costa, D.C., Ell, P.J. et al. (1992) Clozapine, single photon emission tomography and the dopamine D2 receptor blockade hypothesis of schizophrenia. Lancet, 340, 199–202.

    Article  PubMed  CAS  Google Scholar 

  40. Farde, L. and Nordstrom, A.-L. (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br. J. Psychiatry, 160(suppl.17), 30–3.

    Google Scholar 

  41. Nordstrom, A.L., Farde, L. and Halldin, C. (1993) High 5HT2 receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology, 110, 365–7.

    Article  PubMed  CAS  Google Scholar 

  42. Nyberg, S., Farde, L., Eriksson, L. et al. (1993) 5-HT2 and D2 dopamine receptor occupancy in the living brain. A PET study with risperidone. Psychopharmacology, 110, 265–72.

    Article  PubMed  CAS  Google Scholar 

  43. Busatto, G.F., Pilowsky, L.S., Costa, D.C. et al. (1995) Dopamine D2 receptor blockade in vivo with the novel antipsychotics risperidone and remoxipride-an 123I-IBZM single photon emission tomography (SPET) study. Psychopharmacology, 117, 55–61.

    Article  PubMed  CAS  Google Scholar 

  44. Buchsbaum, M.S., DeLisi, L.E., Holcomb, H. et al. (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch. Gen. Psychiatry, 41, 1159–66.

    Article  PubMed  CAS  Google Scholar 

  45. Post, R.M., DeLisi, L.E., Holcomb, H.H. et al. (1987) Glucose utilization in the temporal cortex of effectively ill patients: positron emission tomography. Biol. Psychiatry, 22, 545–53.

    Article  PubMed  CAS  Google Scholar 

  46. Baxter, L.R., Phelps, M.E., Mazziotta, J.C. et al. (1985) Cerebral metabolic rates for glucose in mood disorders. Arch. Gen. Psychiatry, 42, 441–7.

    Article  PubMed  Google Scholar 

  47. Sackheim, H.A., Prohovnik, I., Moeller, J.R. et al. (1990) Regional cerebral blood flow in mood disorders. Arch. Gen. Psychiatry, 47, 60–70.

    Article  Google Scholar 

  48. Baxter, L.R., Schwartz, J.M., Phelps, M.E. et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry, 46, 243–50.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas, P., Vaiva, G., Samaille, E. et al. (1993) Cerebral blood flow in major depression and dysthymia. J. Affective Disord., 29, 235–42.

    Article  CAS  Google Scholar 

  50. Maes, M., Dierckx, R., Meltzer, H.Y. et al. (1993) Regional cerebral blood flow in unipolar depression measured with Tc-99m-HMPAO single photon emission computed tomography: negative findings. Psychiatry Res.: Neuroimaging, 50, 77–88.

    Article  PubMed  CAS  Google Scholar 

  51. Kling, A.S., Metter, E.J., Riege, W.H. and Kuhl, D.E. (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am. J. Psychiatry, 143, 175–80.

    PubMed  CAS  Google Scholar 

  52. Austin, M.P., Dougall, N., Ross, M. et al. (1992) Single photon emission tomography with 99mTc-exametazine in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J. Affective Dis., 26, 31–44.

    Article  CAS  Google Scholar 

  53. Bench, C.J., Fristen, K.J., Brown, R.G. et al. (1993) Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol. Med., 23, 579–90.

    Article  PubMed  CAS  Google Scholar 

  54. Gur, R.C., Skolnick, B.E., Gur, R.E. et al. (1984) Brain function in psychiatric disorders. Arch. Gen. Psychiatry, 41, 695–9.

    Article  PubMed  CAS  Google Scholar 

  55. Agren, H. and Reibring, L. (1994) PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry, 27, 2–6.

    Article  PubMed  CAS  Google Scholar 

  56. Suhara, T., Nakayama, K., Inoue, O. et al. (1992) D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology, 106, 14–18.

    Article  PubMed  CAS  Google Scholar 

  57. Wong, D.F., Wagner, H.N., Pearlson, G. et al. (1989) Dopamine receptor binding of C-11–3-N-methylspiperone in the caudate in schizophrenia and bipolar disorder: a preliminary report. Psychopharmacol. Bull., 21, 595–8.

    Google Scholar 

  58. D’Haenen, H.A. and Bossuyt, A. (1994) Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol. Psychiatry, 35, 128–32.

    Article  PubMed  Google Scholar 

  59. Ebert, D., Fiestel, H., Kaschka, X. et al. (1994) Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation-preliminary results. Biol. Psychiatry, 35, 880–5.

    Article  PubMed  CAS  Google Scholar 

  60. D’Haenen, H., Bossuyt, A., Mertens, J. et al. (1992). SPECT imaging of serotonin 2 receptors in depression. Psychiatry Res.: Neuroimaging, 45, 227–37.

    Article  PubMed  Google Scholar 

  61. Mathew, R.J. and Wilson, W.H. (1991) Substance abuse and cerebral blood flow. Am. J. Psychiatry, 148, 292–305.

    PubMed  CAS  Google Scholar 

  62. London, E.D., Cascella, N.G., Wong, F. et al. (1990) Cocaine induced reduction of glucose utilization in human brain. Arch. Gen. Psychiatry, 47, 587–94.

    Google Scholar 

  63. Volkow, N.D., Mullani, N., Gould, K.L. et al. (1988) Cerebral blood flow in chronic cocaine users. Br. J. Psychiatry, 152, 641–8.

    Article  PubMed  CAS  Google Scholar 

  64. Volkow, N.D., Fowler, J.S., Wolf, A.P. et al. (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am. J. Psychiatry, 148, 621–6.

    PubMed  CAS  Google Scholar 

  65. Volkow, N.D., Hitzemann, R., Wang, G.J. et al. (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse, 11, 184–90.

    Article  PubMed  CAS  Google Scholar 

  66. Levin, J.M., Mendelson, J.H., Holman, B.L. et al. (1995) Improved regional cerebral blood flow in chronic cocaine polydrug users treated with buprenorphine. J. Nucl. Med., 36, 1211–15.

    PubMed  CAS  Google Scholar 

  67. Volkow, N.D., Fowler, J.S., Wolf, A.P. et al. (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry, 147, 719–24.

    PubMed  CAS  Google Scholar 

  68. Baxter, L.R., Schwartz, J.M., Phelps, M. et al. (1988). Localisation of neurochemical effects of cocaine and other stimulants in the human brain. J. Clin. Psychiatry, 49, 23–6.

    PubMed  CAS  Google Scholar 

  69. Volkow, N.D., Fowler, J.S., Wang, G.-J. et al. (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–77.

    Article  PubMed  CAS  Google Scholar 

  70. Volkow, N.D., Hitzemann, R., Wolf, A.P. et al. (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res., 35, 39–48.

    Article  PubMed  CAS  Google Scholar 

  71. Volkow, N.D., Wang, G.J., Begleiter, H. et al. (1995) Regional brain metabolic response to lorazepam in subjects at risk for alcoholism. Alcoholism: Clin. Exp. Res., 19, 510–16.

    Article  CAS  Google Scholar 

  72. Sachs, H., Russell, J.A.G., Christman, D.R. and Cook, B. (1987) Alteration of regional cerebral glucose metabolic rate in non-Korsakoff chronic alcoholism. Arch. Neurol., 44, 1242–51.

    Article  PubMed  CAS  Google Scholar 

  73. Berglund, M., Hagstadius, S., Risberg, J. et al. (1987) Normalization of regional cerebral blood flow in alcoholics during the first 7 weeks of abstinence. Acta Psychiatr Scand., 75, 202–8.

    Article  PubMed  CAS  Google Scholar 

  74. Volkow, N.D., Hitzemann, R., Wang, G.J. et al. (1992) Decreased brain metabolism in neurologically intact healthy alcoholics. Am. J. Psychiatry, 149, 1016–22.

    PubMed  CAS  Google Scholar 

  75. Volkow, N.D., Wang, G.J., Hitzemann, R. et al. (1994) Recovery of brain glucose metabolism in detoxified alcoholics. Am. J. Psychiatry, 151, 178–83.

    PubMed  CAS  Google Scholar 

  76. Adams, K.M., Gilman, S., Koeppe, R.A. et al. (1993) Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol: Clin. Exp. Res., 17, 205–10.

    Article  CAS  Google Scholar 

  77. Hietala, J., West, C., Syvalahti, E. et al. (1994) Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology, 116, 285–90.

    Article  PubMed  CAS  Google Scholar 

  78. Tiihonen, J., Kuikka, J., Bergstrom, K. et al. (1995) Altered striatal dopamine reuptake site densities in habitually violent and non-violent alcoholics. Nature Med., 1(7), 654–7.

    Article  PubMed  CAS  Google Scholar 

  79. Pauli, S., Liljequist, S., Farde, L. et al. (1992) PET analysis of alcohol interaction with the brain disposition of [HC] flumazenil. Psychopharmacology, 107, 180–5.

    Article  PubMed  CAS  Google Scholar 

  80. Litton, J.-E., Neiman, J., Pauli, S. et al. (1993) PET analysis of [HC] flumazenil binding to benzodiazepine receptors in chronic alcohol dependent men and healthy controls. Psychiatry Res.: Neuroimaging, 50, 1–13.

    Article  PubMed  CAS  Google Scholar 

  81. Mathew, R.J. and Wilson, W.H. (1990) Anxiety and cerebral blood flow. Am. J. Psychiatry, 147, 838–49.

    PubMed  CAS  Google Scholar 

  82. Gur, R.C., Gur, R.E., Resnick, S. et al. (1987) The effect of anxiety on cortical cerebral blood flow and metabolism. J. Cereb. Blood Flow Metab., 7, 173–7.

    Article  PubMed  CAS  Google Scholar 

  83. Lucey, J.V., Costa, D.C., Blanes, T. et al. (1995) Regional cerebral blood flow in obsessive-compulsive disordered patients at rest. Br. J. Psychiatry, 167, 629–34.

    Article  PubMed  CAS  Google Scholar 

  84. Insel, T.R. (1992) Toward a neuroanatomy of obsessive-compulsive disorder. Arch. Gen. Psychiatry, 49, 739–44.

    Article  PubMed  CAS  Google Scholar 

  85. Baxter, L.R., Schwartz, J.M., Bergman, K.S. et al. (1992) Caudate glucose metabolic rate changes with both drug and behaviour therapy for obsessive-compulsive disorder. Arch. Gen. Psychiatry, 49, 681–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lingford-Hughes, A. (1998). Psychiatric disorders. In: Maisey, M.N., Britton, K.E., Collier, B.D. (eds) Clinical Nuclear Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3356-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3356-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-75180-6

  • Online ISBN: 978-1-4899-3356-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics