Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 325))

Abstract

The main goal of structure-activity relationship studies in bioactive peptides, relevant to medicinal chemistry, is the understanding of the biological phenomena at molecular level in order to produce and possibly develop new materials which might mimic biological processes by enhancing or somehow modulating their effects. The peptide pharmaceutical targets are usually hormones, enzymes, transport systems, neurotransmitters, ion channel ionophores antibiotics, antigens. The advantages in the use of peptides as pharmaceuticals are based on the fact that: (i) they should be considered “natural” products; (ii) opportunely modified analogs could possibly show increased potency and enhanced specificity; (iii) they are easy to synthesize and (iv) they could present extraordinary ranges of biological properties coupled with minimal non-mechanism-based toxicity. In this area, constrained non-coded α-amino acid residues are of great interest as “building blocks” for the preparation of analogs, which should not only retain the pharmacological properties of the native peptide, but they should also exhibit enhanced resistance to biodegradation with improved bioavailability and pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Toniolo, Structure of conformationally constrained peptides from model to bioactive peptides, Biopolymers 28:247 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. C. Toniolo, and E. Benedetti, Structures of polypeptides from α-amino acids disubstituted at the α-carbon, Macromolecules 24: 4004 (1991).

    Article  CAS  Google Scholar 

  3. C. Toniolo and E. Benedetti, Old and new structures from studies of synthetic peptides rich in Cα,α-disubstituted glycines, ISI Atlas Sci.:Biochem. 1:225 (1988).

    CAS  Google Scholar 

  4. C. Toniolo, G.M. Bonora, A. Bavoso, E. Benedetti, B. DiBlasio, V. Pavone, and C. Pedone, Preferred conformations of peptides containing α,α-disubstituted α-aminoacids, Biopolymers 22:205 (1983).

    Article  CAS  Google Scholar 

  5. B.V.V. Prasad and P. Balaram, The stereochemistry of peptides containing α-aminoisobutyric acid, C.R.C. Crit Rev.Biochem. 16:307 (1984).

    Article  CAS  Google Scholar 

  6. B. Di Blasio, V. Pavone, A. Lombardi, C. Pedone and E. Benedetti, Noncoded residues as building blocks in the design of specific secondary structures:symmetrically disubstituted glycines and β-alanine, Biopolymers 33:1037 (1993) and references therein.

    Article  PubMed  Google Scholar 

  7. R.C. Pandey, J.C. Cook, Jr., and K. L. Rinehart, Structures of the peptides antibiotics Emerimicins III and IV, J. Am. Chem.Soc. 99:5205 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. B. Bachet, C. Brassy, I. Morize, E. Surcout, J.P. Momon, B. Bodo and S. Rebuffat, Crystallization and preliminary x-ray diffraction results of trichorzianine A 1, a peptide with nineteen residues from trichoderma harzianum, J. Mol. Biol. 170:795 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. E.K.S. Vijayakumar and P. Balaram, Solution conformations of penta and heptapeptides containing repetitive α-aminoisobutyryl.L-alanyl and ocaminoisobutyryl-L-valyl sequences Tetrahedron 39:2725 (1983).

    Article  CAS  Google Scholar 

  10. E.K.S. Vijayakumar, and P. Balaram, Stereochemistry of a-aminoisobutyric acid peptidesin solution: helical conformations of protected decapeptides with repeating Aib-L-Ala and Aib-L-Val sequences, Biopolymers 22:2133 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. R. Nagaraj and P. Balaram, Alamethicin, a transmembrane channel, Acc.Chem. Res. 14:356 (1981).

    Article  CAS  Google Scholar 

  12. E. Benedetti, C. Pedone, and C. Toniolo, First crystal structure analysis of a complete homo-oligopeptide series, in: “Peptides 1980”, K. Brunfeldt, ed., Scriptor, Copenhagen (1981).

    Google Scholar 

  13. R. Bosch, G. Jung, H. Schmitt, and W. Winter, Crystal structure of the α-helical undecapeptide Boc-Ala-Aib-Ala-Aib-Ala-Glu (OBzl)-Ala-Aib-Ala-Aib-Ala-OMe, Biopolymers 24:961 (1985).

    Article  CAS  Google Scholar 

  14. A.W. Burgess and S.J. Leach, An obligatory α-helical amino acid residue, Biopolymers 12:2599 (1973).

    Article  PubMed  CAS  Google Scholar 

  15. N. Shamala, R. Nagaraj, and P. Balaram, The 310helical conformation of a pentapeptide containing α-aminoisobutyric acid (Aib): x-ray crystal structure of Tos-(Aib)5-OMe, J. Chem.Soc.Chem.Commun. 996 (1978).

    Google Scholar 

  16. C. Pulla Rao, N. Shamala, R. Nagaraj, C.N.R. Rao, and P. Balaram, Hydrophobic channel in crystals of an α-aminoisobutyric acid pentapeptide, Bioch.Biophys.Res. Commun. 103:898 (1981).

    Article  Google Scholar 

  17. E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, M. Crisma, G.M. Bonora, and C. Toniolo, Solid-state and solution conformation of homo oligo (α-aminoisobutyric acids) from tripeptide to pentapeptide: evidence for a 310 helix, J. Am. Chem Soc. 104:2437 (1982).

    Article  CAS  Google Scholar 

  18. A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, and G.M. Bonora, Long polypeptides 310-helices at atomic resolution, Proc.Natl.Acad. Sci. USA 83:1988 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. C. Toniolo, G.M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, and C. Pedone, A long regular polypeptide 310 helix, Macromolecules 19:472 (1986).

    Article  CAS  Google Scholar 

  20. B. Di blasio, A. Santini, V. Pavone, C. Pedone, E. Benedetti, V. Moretto, M. Crisma, and C. Toniolo, Crystal-state conformation of homo-oligomers of α-aminoisobutyric acid: molecular and crystal structure of pBrBz-(Aib)6-OMe, Struct.Chem. 2:523 (1990).

    Article  Google Scholar 

  21. V. Pavone, B. Di Blasio, C. Pedone, A. Santini, E. Benedetti, F. Formaggio, M. Crisma, and C. Toniolo, Preferred conformation of homo-oligomers of α-aminoisobutyric acid: molecular and crystal structure of Z-(Aib)7-OMe, Gazz.Chim. Ital. 121:21 (1990).

    Google Scholar 

  22. C. Toniolo, M. Crisma, G.M. Bonora, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, and A. Santini, Preferred conformation of the terminally blocked (Aib) homo-oligopeptide: a long 310-helix, Biopolymers 31:129 (1991).

    Article  CAS  Google Scholar 

  23. G. Valle, C. Toniolo, and G. Jung, New peptide conformation in crystals of H-Aib-Aib-OTBu and TFA-Aib-Aib-OTBu Gazz.Chim. Ital. 117:549 (1987).

    CAS  Google Scholar 

  24. P. Van Roey, G.D. Smith, T.M. Balasubramanian, and G.R. Marshall, Tertbutyloxycarbonyl-α-aminoisobutyrate benzyl ester, C20H30N2O5, Acta Cryst. C39: 894 (1983).

    Google Scholar 

  25. C.M. Venkatachalam, Stereochemical criteria for polypeptides and proteins.V. Conformation of a system of three linked peptide units, Biopolymers 6:1425 (1968).

    Article  PubMed  CAS  Google Scholar 

  26. C. Aleman, J.A. Subirana, and J.J. Perez, A molecular mechanical study of the structure of poly (α-aminoisobutyric acid), Biopolymers 32:621 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. C. Toniolo, and E. Benedetti, The polypeptide 310-helix, TIBS 16:350 (1991).

    PubMed  CAS  Google Scholar 

  28. G.N. Ramachandran, C.M. Venkatachalam, and S. Krimm, Stereochemical criteria for polypeptide and protein chain conformations. III. Helical and hydrogen-bonded polypeptide chains, Biophys. J. 6:849 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. E.N. Baker, and R.E. Hubbard, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol. 44:97 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. D.J. Barlow, and J.M. Thornton, Helix geometry in proteins, J. Mol. Biol. 201:601 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. V. Pavone, E. Benedetti, B. Di Blasio, C. Pedone, A. Santini, A. Bavoso, C. Toniolo, M. Crisma,, and L. Sartore, Critical main-chain length for conformational conversion from 310-helix to α-helix in polypeptides, J. Biomol.Struct.Dyn. 7:1321 (1990).

    Article  CAS  Google Scholar 

  32. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, A. Bavoso, C. Toniolo, M. Crisma, and L. Sartore, Linear oligopeptides. Part 227. X-ray crystal and molecular structures of two α-helix forming (Aib-Ala) sequential oligopeptides, pBrBz-(Aib-L-Ala)5-OMe and pBrBz-(Aib-L-Ala)6-OMe, J. Chem.Soc. Perkin Trans. 2:1829 (1990).

    Google Scholar 

  33. R.O. Fox, and F.M. Richards, A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 A resolution, Nature 300:325 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. T. Butters, P. Hutter, G. Jung, P. Pauls, H. Schmitt, G.M. Sheldrick, and W. Winter, On the structure of the Helical N-terminus in Alamethicin-α-Helix or 310 Helix?, Angew.Chem. Int. Ed. Engl. 20:889 (1981).

    Article  Google Scholar 

  35. A.K. Francis, M. Iqbal, P. Balaram, and M. Vijayan, The crystal structure of a 310 helical decapeptide containig α-aminoisobutyric acid, FEBS Lett. 155:230 (1983).

    Article  CAS  Google Scholar 

  36. I.L. Karle, M. Sukumar, and P. Balaram, Parallel packing of α-helices in crystals of the zervamicin IIA analog Boc-Trp-lle-Ala-Aib-lle-Val-Aib-Leu-Aib-Pro-OMe. 2H20, Proc.Natl.Acad.Sci.USA 83:9284 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. I.L. Karle, J.L. Flippen-Anderson, M. Sukumar, and P. Balaram, Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 310-helix, α-helix, and β-bend ribbon, Proc.Natl.Acad.Sci.USA 84:5087 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. C. Toniolo, G.M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, and C. Pedone, Molecular structure of peptaibol antibiotics: solution conformation and crystal structure of the octapeptide corresponding to the 2–9 sequence of emerimicin III and IV, J. Biomol.Struct.Dyn. 3:585 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. G.R. Marshall, E.E. Hodgkin, D.A. Lang, G.D. Smith, J. Zabrocki, and M.T. Leplawy, Factors governing helical preference of peptides containing multiple α,α-dialkyl amino acids, Proc.Natl.Acad.Sci.USA 87:487 (1988).

    Article  Google Scholar 

  40. M. Le Bars, B. Bachet, and J.P. Mornon, Structure of a helical 19 peptide (trichorzianine A IIIC). Modelling of trans membrane channels, Zeit. Kristall. 185:588 (1988).

    Google Scholar 

  41. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, M. Crisma, and C. Toniolo, The 310-and α-helical conformations in peptides, in: “Molecular conformation and Biological Interactions”, P. Balaram and S. Ramaseshan, eds., Indian Academy of Science, Bangalore (1991).

    Google Scholar 

  42. E. Benedetti, C. Toniolo, P. Hardy, V. Barone, A. Bavoso, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, C. Pedone, G.M. Bonora, and I. Lingham, Folded and extended structures of homooligopeptides from α,α-dialkylated glycines. Conformational energy computation and x-ray diffraction study, J. Am.Chem.Soc. 106:8146 (1984).

    Article  CAS  Google Scholar 

  43. G.M. Bonora, C. Toniolo, B. Di Blasio, V. Pavone, C. Pedone, E. Benedetti, I. Lingham, and P. Hardy, Folded and extended structures of homooligopeptides from α,α-dialkylated α-amino acids. An infrared absorption and 1H nuclear magnetic resonance study, J. Am.Che. Soc. 106:8152 (1984).

    Article  CAS  Google Scholar 

  44. C. Toniolo, G.M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, and C. Pedone, Conformation of pleionomers of α-aminoisobutyric acid, Macromolecules 18:895 (1985).

    Article  CAS  Google Scholar 

  45. G. Valle, G.M. Bonora, C. Toniolo, P.M. Hardy, M.T. Leplawy, and A. Redlinski, Intramolecularly hydrogen-bonded peptide conformations. Preferred crystalstate and solution conformation of N-monochloroacetylated glycines dialkylated at the α-carbon atom, J. Chem. Soc. Perkin Trans. 2:885 (1986).

    Google Scholar 

  46. E. Benedetti, V. Barone, A. Bavoso, B. Di Blasio, F. Lelj, V. Pavone, C. Pedone, G.M. Bonora, C. Toniolo, M.T. Leplawy, K. Kaczmarek, and A. Redlinski, Structural versatility of peptides from Cα,α-dialkylated glycines. I. A conformational energy computation and x-ray diffraction study of homopeptidesfrom Cα,α-diethylglycine, Biopolymers 27:357 (1988).

    Article  CAS  Google Scholar 

  47. C. Toniolo, G.M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, V. Barone, F. Lelj, M.T. Leplawy, K. Kaczmarek, and A. Redlinski, Structural versatility of peptides from Cα,α-dialkylated glycines. II. An IR absorption and 1H-NMR study of homo-oligopeptides from Cα,α-diethylglycine, Biopolymers 27:373 (1988).

    Article  CAS  Google Scholar 

  48. M. Crisma, G. Valle, G.M. Bonora, E. De Menego, C. Toniolo, F. Lelj, V. Barone, F. Fratemali, Structural versatility of peptides from Cα,α-disubstituted glycine: preferred conformation of Cα,α-diphenylglycine residue, Biopolymers 30:1 (1990).

    Article  CAS  Google Scholar 

  49. G. Valle, M. Crisma, G.M. Bonora, C. Toniolo, F. Lelj, V. Barone, F. Fratemali, P.M. Hardy, A. Langram-Goldsmith, and H.L.S. Maia, Structural versatility of peptides from Cα,α-disubstituted glycines. Preferred conformation of the Cα,α-dibenzylglycine residue, J. Chem.Soc. Perkin Trans II 1481 (1990).

    Google Scholar 

  50. V. Barone, F. Lelj, A. Bavoso, B. Di Blasio, P. Grimaldi, V. Pavone, and C. Pedone, Conformational behaviour of α,α-dialkylated peptides, Biopolymers 24:1759 (1985).

    Article  CAS  Google Scholar 

  51. C. Toniolo, and E. Benedetti, The fully extended polypeptide conformation, in: “Molecular Conformation and Biological Interactions”, P. Balaram and S. Ramaseshan, eds., Indian Academy of Science, Bangalore (1991).

    Google Scholar 

  52. C. Toniolo, M. Crisma, G. Valle, G.M. Bonora, V. Barone, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, and F. Lelj, Structural versatility of peptides from Cα,α-dialkylated glycines: Ac3C-rich peptides, in “Peptides Chemistry”, T. Shiba and S. Sakakibara, eds., Protein Res.Foundation, Osaka (1988).

    Google Scholar 

  53. R. Bardi, A.M. Piazzesi, C. Toniolo, M. Sukumar, and P. Balaram, Stereochemistry of peptides containing 1-aminocyclopentanecarboxylic acid (Ac5C): solution and solid-state conformation of Boc-Ac5C-Ac5C-NHMe, Biopolymers 25:1635 (1986).

    Article  CAS  Google Scholar 

  54. A. Santini, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, F. Fraternali, F. Lelj, V. Pavone, C. Pedone, M. Crisma, G.M. Bonora, and C. Toniolo, Structural versatility of peptides from Cα,α-dialkylated glycines: a conformational energy calculation and x-ray diffraction study of homopeptides from 1-aminocyclopentane-1-carboxylic acid, Int. J. Biol. Macromol. 10:292 (1988).

    Article  CAS  Google Scholar 

  55. E. Benedetti, V. Barone, A. Bavoso, B. Di Blasio, F. Lelj, V. Pavone, C. Pedone, C. Toniolo, M. Crisma, and G.M. Bonora, Structural versatility of peptides from Cα,α-dialkylated glycines: AC5C-and Ac6C-containing peptides, in: “Peptides 1986”, D. Theodoropoulos, ed., De Gruyter, Berlin (1986).

    Google Scholar 

  56. V. Barone, F. Fraternali, P.L. Cristinziano, F. Lelj, and A. Rosa, Conformational behaviour of α,α-dialkylated peptides: ab initio and empirical results for cyclopropylglycine, Biopolymers 27:1673 (1988).

    Article  CAS  Google Scholar 

  57. M. Crisma, G.M. Bonora, C. Toniolo, V. Barone, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, F. Fraternali, A. Bavoso, and F. Lelj, Structural versatility of peptides containing Cα,α-dialkylated glycines. Conformational energy computations, i. r. absorption and 1H-Nuclear magnetic resonance analysis of 1-aminocyclopropane-1-carboxylicacid homopeptides, Int. J. Biol. Macromol. 11:345 (1989).

    Article  PubMed  CAS  Google Scholar 

  58. G. Valle, M. Crisma, C. Toniolo, E.M. Holt, M. Tamura, J. Bland, and C.H. Stammer, Crystallographic characterization of conformation of 1-aminocyclopropane-1-carboxylic acid residue (Ac3c) in simple derivatives and peptides, Int. J. Peptide Proteins Res. 34:56 (1989).

    Article  CAS  Google Scholar 

  59. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, M. Crisma, G. Valle, and C. Toniolo, Structural versatility of peptides from Cα,α-dialkylated glycines. Linear Ac3c homo-oligopeptides, Biopolymers 28:175 (1989).

    Article  CAS  Google Scholar 

  60. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, V. Barone, F. Fraternali, F. Lelj, A. Bavoso, M. Crisma, and C. Toniolo, Structural versatility of peptides containing Cα,α-dialkylated glycines. An x-ray diffraction study of six 1-aminocyclopropane-1-carboxylic acid rich peptides, Int. J. Biol. Macrom. 11:353 (1989).

    Article  CAS  Google Scholar 

  61. V. Pavone, E. Benedetti, V. Barone, B. Di Blasio, F. Lelj, C. Pedone, A. Santini, M. Crisma, G.M. Bonora, and C. Toniolo, Structural versatility of peptides from Cα,α-dialkylated glycines. A conformational energy computation and x-ray diffraction study of homopeptides from 1-aminocyclohexane-1-carboxylic acid, Macromolecules 21:2064 (1988).

    Article  CAS  Google Scholar 

  62. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, M. Crisma, and C. Toniolo, Molecular and crystal structure of benzyloxycarbonyl-1-aminocyclohexane-1-carboxylyl-1-aminocyclohexane-1-carboxylic acid tertbutyl ester, Acta Cryst. C45:634 (1989).

    CAS  Google Scholar 

  63. H. Kessler, M. Kelin, A. Muller, K. Wagner, J.W. Bats, K. Ziegler, and M. Frimmer, Conformational prerequisites for the in vitro inhibition of cholate uptake in hepatocytes by cyclic analogues of antamanide and somatostatin, Angew.Chem. Int.Ed.Engl. 25:997 (1986).

    Article  Google Scholar 

  64. H. Kessler, J.W. Bats, C. Griesinger, S. Koll, M. Will, and K. Wagner, Peptide conformation. 46. Conformational analysis of a superpotent cytoprotective cyclic somatostatin analogue, J. Am. Chem. Soc. 110:1033 (1986).

    Article  Google Scholar 

  65. B. Di Blasio, E. Benedetti, V. Pavone, C. Pedone, and M. Goodman, Conformations of bioactive peptides: cyclolinopeptide A., Biopolymers 26:2099 (1986).

    Article  Google Scholar 

  66. B. Di Blasio, F. Rossi, E. Benedetti, V. Pavone, C. Pedone, P.A. Temussi, G. Zanotti, and T. Tancredi, Bioactive peptides: solid-state and solution conformation of cyclolinopeptide A., J. Am. Chem. Soc. 111:9089 (1989).

    Article  Google Scholar 

  67. B.S. Neela, M.V. Manijula, S. Ramakumar, D. Balasubramanian, and M.A. Viswamitra, Conformation of cyclolinopeptide dihydrate: an antamanide analogue, Biopolymers 29:1499 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. B. Di Blasio, F. Rossi, E. Benedetti, V. Pavone, M. Saviano, C. Pedone, G. Zanotti, and T. Tancredi, Bioactive peptides: x-ray and NMR conformational study of [Aib5,6-D-Ala8]cyclolimopeptide A. J. Am. Chem. Soc. 114:8277 (1992).

    Article  Google Scholar 

  69. T. Tancredi, E. Benedetti, M. Grimaldi, C. Pedone, F. Rossi, M. Saviano, P.A. Temussi, and G. Zanotti, Ion binding of Cyclolinopeptide A: an NMR and CD conformational study, Biopolymers 31:761 (1991).

    Article  PubMed  CAS  Google Scholar 

  70. M.A. Castiglione-Morelli, A. Pastore, C. Pedone, P.A. Temussi, G. Zanotti and T. Tancredi, Conformational study of cyclolinopeptide A. A distance-geometry and molecular dynamics approach, Int. J. Peptide Protein Res. 37:81 (1991).

    Article  CAS  Google Scholar 

  71. R.S. Shallenberger, and T. Acree, Molecular theory of sweet taste, Nature 216:480 (1967).

    Article  PubMed  CAS  Google Scholar 

  72. E.W. Deutsch, and C. Hansch, Dependence of relative sweetness on hydrophobic bonding, Nature 211:75 (1966).

    Article  PubMed  CAS  Google Scholar 

  73. T. Yamazaki, E. Benedetti, D. Kent, and M. Goodman, A three-dimensional model for Taste utilizing stereoisomeric peptides and peptidomimetics, Angew. Chem. Int. Ed. Engl., in press; and references therein.

    Google Scholar 

  74. R.D. Feinstein, A. Polinski, A.J. Douglas, C.M.C.F. Bejier, R.K. Chadha, E. Benedetti, and M. Goodman, Conformational analysis of the dipeptide sweetener alitarne and two stereoisomers by proton NMR, computer simulations, and x-ray crystallography, J. Am. Chem. Soc. 113:3467 (1991).

    Article  CAS  Google Scholar 

  75. C. Mapelli, M.G. Newton, C.E. Ringold, and C.H. Stammer, Cyclopropane amino acid ester dipeptide sweeteners, Int. J. Peptide Protein Res. 30:498 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benedetti, E. (1994). Molecular Engineering in the Preparation of Bioactive Peptides. In: Doniach, S. (eds) Statistical Mechanics, Protein Structure, and Protein Substrate Interactions. NATO ASI Series, vol 325. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1349-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1349-4_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1351-7

  • Online ISBN: 978-1-4899-1349-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics