Advertisement

Apoptosis and Its Regulation

  • J. John Cohen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 406)

Abstract

There is only one popular way to be conceived, but a myriad of ways to die. We die from some external force, such as an accident or foul play, or else from “natural causes”. It is interesting how good the parallel is with the cells out of which we are made. All our somatic cells arise by the process of mitosis, regardless of their location in the body or their ultimate destiny. And these cells die by either of two processes, roughly equivalent to accidents and natural causes. Just as a pathologist will determine cause of death by examining the body, we distinguish the two forms of cell death by morphology1.

Keywords

Programme Cell Death Suicide Gene Final Common Pathway Immature Thymocyte Cell Death Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F.R. Kerr, A.H. Wyllie, and A.R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26: 239 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    H.M. Ellis and H.R. Horvitz. Genetic control of programmed cell death in the nematode C. elegans, Cell 44: 817 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    R.A. Lockshin and J. Beaulaton. Programmed cell death, Life Sci. 15: 1549 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    G.J. Deenen, I. van Balen, and D. Opstelten. In rat B lymphocyte genesis sixty percent is lost from the bone marrow at the transition of nondividing pre-B cell to sIgM+ B lymphocyte, the stage of Ig light chain gene expression, Eur. J. Immunol. 20:557 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    J.S. Savill, A.H. Wyllie, J.E. Henson, M.J. Walport, P.M. Henson, and C. Haslett. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages, J. Clin. Invest. 83: 865 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    E.J. Jenkinson, R. Kingston, C.A. Smith, G.T. Williams, and J.J.T. Owen. Antigen-induced apoptosis in developing T cells: a mechanism for negative selection of the T cell receptor repertoire, Eur. J. Immunol. 19: 2175 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    R.C. Duke and J.J. Cohen. IL-2 addiction: withdraw] of growth factor activates a suicide program in dependent T cells, Lymphokine Res. 5: 289 (1986).PubMedGoogle Scholar
  8. 8.
    A. Glucksmann. Cell deaths in normal vertebrate ontogeny, Biol. Revs. 26: 59 (1951).CrossRefGoogle Scholar
  9. 9.
    R.C. Duke, R. Chervenak, and J.J. Cohen. Endogenous endonuclease-induced DNA fragmentation: An early event in cell-mediated cytolysis, Proc. Natl. Acad. Sci. U. S. A. 80: 6361 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Durkheim, “Suicide, A Study in Sociology”, Free Press, Glencoe (1951).Google Scholar
  11. 11.
    J. Yuan and H.R. Horvitz. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death, Dev. Biol. 138: 33 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    A.H. Wyllie. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activation, Nature 284: 555 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    C.A. Smith, G.T. Williams, R. Kingston, E.J. Jenkinson, and J.J.T. Owen. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures, Nature 337: 181 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    K.M. Murphy, A.B. Heimberger, and D.Y. Loh. Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCR10 thymocytes in vivo, Science 250: 1720 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    K.S. Sellins and J.J. Cohen. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes, J. Immunol. 139: 3199 (1987).PubMedGoogle Scholar
  16. 16.
    D.J. McConkey, P. Hartzell, S.K. Duddy, H. Hakansson, and S. Orrenius. 2,3,7,8-Tetrachlorodibenzo-pdioxin kills immature thymocytes by Ca++-mediated endonuclease activation, Science 242: 256 (1988).Google Scholar
  17. 17.
    K.S. Sellins and J.J. Cohen. Hyperthermia induces apoptosis in thymocytes, Radiat. Res. 126: 88 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    C.J. Sanderson, Morphological aspects of lymphocyte mediated cytotoxicity, in: “Mechanisms of Cell-Mediated Cytotoxicity”, W.R. Clark, and P. Golstein, eds. Plenum Press, New York (1982).Google Scholar
  19. 19.
    G.C. Godman, A.F. Miranda, A.D. Deitch, and S.W. Tanenbaum. Action of cytochalasin D on cells of established lines. III Zeiosis and movements at the cell surface, J. Cell Biol. 64: 644 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Fesus, P.J. Davies, and M. Piacentini. Apoptosis: molecular mechanisms in programmed cell death, Eur. J. Cell Biol. 56: 170 (1991).PubMedGoogle Scholar
  21. 21.
    M.A. Kolber, K.O. Broschat, and B. Landa-Gonzalez. Cytochalasin B induces cellular DNA fragmentation, FASEB J. 4: 3021 (1990).PubMedGoogle Scholar
  22. 22.
    N.P. Matylevich, B.A. Korol, P.A. Nelipovich, V.N. Afanasev, and S.R. Umansky. [D2O inhibition of interphase thymocyte death], Radiobiologiia 31: 27 (1991).PubMedGoogle Scholar
  23. 23.
    Blumenthal, D.K. and Krebs, E.G. Calmodulin-binding domains. In: Calmodulin, edited by Cohen, P. and Klee, C.B. Amsterdam: Elsevier, 1988, p. 341–355.Google Scholar
  24. 24.
    S.J. Martin, G.A. O’Brien, W.K. Nishioka, A.J. McGahon, A. Mahboubi, T.C. Saido, and D.R. Green. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis, J. Biol. Chem. 270: 6425 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    V.A. Fadok, D.R. Voelker, P.A. Campbell, J.J. Cohen, D.L. Bratton, and P.M. Henson. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148: 2207 (1992).PubMedGoogle Scholar
  26. 26.
    V.A. Fadok, J.S. Savill, C. Haslett, D.L. Bratton, D.E. Doherty, P.A. Campbell, and P.M. Henson. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells, J. Immunol. 149: 4029 (1992).PubMedGoogle Scholar
  27. 27.
    J.S. Savill, V. Fadok, P. Henson, and C. Haslett. Phagocyte recognition of cells undergoing apoptosis, Immunol. Today 14: 131 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    L.C. Meagher, J.S. Savill, A. Baker, R.W. Fuller, and C. Haslett. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2, J. Leukoc. Biol. 52: 269 (1992).PubMedGoogle Scholar
  29. 29.
    A.H. Wyllie, Cell death: a new classification separating apoptosis from necrosis, in: “Cell Death in Biology and Pathology”, I.D. Bowen and R.A. Lockshin, eds., Chapman & Hall, London (1981).Google Scholar
  30. 30.
    J.A. Cidlowski. Glucocorticoids stimulate ribonucleic acid degradation in isolated rat thymic lymphocytes in vitro, Endocrinology 111: 184 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    R.G. MacDonald and J.A. Cidlowski. Glucocorticoid-stimulated protein degradation in lymphocytes: quantitation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Arch. Biochem. Biophys. 212: 399 (1981).CrossRefGoogle Scholar
  32. 32.
    T. Crompton, M.C. Peitsch, H.R. MacDonald, and J. Tschopp. Propidium iodide staining correlates with the extent of DNA degradation in isolated nuclei, Biochem. Biophys. Res. Commun. 183: 532 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Dive, C.D. Gregory, D.J. Phipps, D.L. Evans, A.E. Milner, and A.H. Wyllie. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry, Biochim. Biophys. Acta 1133: 275 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    M.G. Ormerod, M.K. Collins, G. Rodriguez-Tarduchy, and D. Robertson. Apoptosis in interleukin-3-dependent haemopoietic cells. Quantification by two flow cytometric methods, J. Immunol. Methods 153: 57 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    X.-M. Sun, R.T. Snowden, D.N. Skilleter, D. Dinsdale, M.G. Ormerod, and G.M. Cohen. A flow-cytometric method for the separation and quantitation of normal and apoptotic thymocytes, Anal. Biochem. 204: 351 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    W.G. Telford, L.E. King, and P.J. Fraker. Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry, Cytometry 13: 137 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    Z. Darzynkiewicz, S. Bruno, G. Del Bino, W. Gorczyca, M.A. Hotz, P. Lassota, and F. Traganos. Features of apoptotic cells measured by flow cytometry, Cytometry 13: 795 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    G.M. Cohen, X.-M. Sun, R.T. Snowden, D. Dinsdale, and D.N. Skilleter. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation, Biochem. J. 286: 331 (1992).PubMedGoogle Scholar
  39. 39.
    K.S. Sellins and J.J. Cohen. Cytotoxic T lymphocytes induce different types of DNA damage in target cells of different origins, J. Immunol. 147: 795 (1991).PubMedGoogle Scholar
  40. 40.
    G.M. Cohen, X.M. Sun, H. Fearnhead, M. MacFarlane, D.G. Brown, R.T. Snowden, and D. Dinsdale. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes, J. Immunol. 153: 507 (1994).PubMedGoogle Scholar
  41. 41.
    D.J. McConkey, P. Hartzell, P. Nicotera, and S. Orrenius. Calcium-activated DNA fragmentation kills immature thymocytes, FASEB J. 3: 1843 (1989).PubMedGoogle Scholar
  42. 42.
    Y.F. Shi, M.G. Szalay, L. Paskar, M. Boyer, B. Singh, and D.R. Green. Activation-induced cell death in T cell hybridomas is due to apoptosis. Morphologic aspects and DNA fragmentation, J. Immunol. 144: 3326 (1990).PubMedGoogle Scholar
  43. 43.
    T. Crompton. IL3-dependent cells die by apoptosis on removal of their growth factor, Growth Factors 4: 109 (1991).PubMedCrossRefGoogle Scholar
  44. 44.
    M.D. Jacobson, J.F. Burne, and M.C. Raff. Programmed cell death and Bc1–2 protection in the absence of a nucleus, EMBO J. 13: 1899 (1994).PubMedGoogle Scholar
  45. 45.
    J.J. Cohen. Programmed cell death in the immune system, Adv. Immunol. 50: 55 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    S.V. Lennon, S.J. Martin, and T.G. Cotter. Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli, Biochem. Soc. Trans. 18: 343 (1990).PubMedGoogle Scholar
  47. 47.
    J.J. Cohen and R.C. Duke. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38 (1984).PubMedGoogle Scholar
  48. 48.
    G.I. Evan, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein, Cell 69: 119 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    Y.F. Shi, J.M. Glynn, L.J. Guilbert, T.G. Cotter, R.P. Bissonnette, and D.R. Green. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science 257: 212 (1992).PubMedCrossRefGoogle Scholar
  50. 50.
    L. Rao, M. Debbas, P. Sabbatini, D.M. Hockenbery, S.J. Korsmeyer, and E. White. The adenovirus EIA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins, Proc. Natl. Acad. Sci. U. S. A. 89: 7742 (1992).PubMedCrossRefGoogle Scholar
  51. 51.
    J. Yuan and H.R. Horvitz. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death, Development 116: 309 (1992).PubMedGoogle Scholar
  52. 52.
    J. Yuan, S. Shaham, S. Ledoux, H.M. Ellis, and H.R. Horvitz. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme, Cell 75: 641 (1993).PubMedCrossRefGoogle Scholar
  53. 53.
    P. Li, H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, and J. Salfeld. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock, Cell 80: 401 (1995).PubMedCrossRefGoogle Scholar
  54. 54.
    M.K. Squier, A.C. Miller, A.M. Malkinson, and J.J. Cohen. Calpain activation in apoptosis, J. Cell Physiol. 159: 229 (1994).PubMedCrossRefGoogle Scholar
  55. 55.
    D. Ginsberg, D. Michael-Michalovitz, and M. Oren. Induction of growth arrest by a temperature-sensitive p53 mutant is correlated with increased nuclear localization and decreased stability of the protein, Mol. Cell. Biol. 11: 582 (1991).PubMedGoogle Scholar
  56. 56.
    E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature 352: 345 (1991).PubMedCrossRefGoogle Scholar
  57. 57.
    R. Shaw, R. Bovey, S. Tardy, R. Sahli, B. Sordat, and J. Costa. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line, Proc. Natl. Acad. Sci. U. S. A. 89: 4495 (1992).PubMedCrossRefGoogle Scholar
  58. 58.
    D.P. Lane. p53, guardian of the genome, Nature 358: 15 (1992).PubMedCrossRefGoogle Scholar
  59. 59.
    T.G. Graeber, C. Osmanian, T. Jacks, D.E. Housman, C.J. Koch, S.W. Lowe, and A.J. Giaccia. Hypoxiamediated selection of cells with diminished apoptotic potential in solid tumors, Nature 379: 88 (1996).PubMedCrossRefGoogle Scholar
  60. 60.
    N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66: 233 (1991).PubMedCrossRefGoogle Scholar
  61. 61.
    A. Oehm, I. Behrmann, W. Falk, M. Pawlita, G. Maier, C. Klas, M. Li-Weber, S. Richards, J. Dhein, B.C. Trauth, and et al.. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen, J. Biol. Chem. 267: 10709 (1992).PubMedGoogle Scholar
  62. 62.
    R. Watanabe-Fukunaga, C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature 356: 314 (1992).PubMedCrossRefGoogle Scholar
  63. 63.
    K.M. Debatin, C.K. Goldmann, R. Bamford, T.A. Waldmann, and P.H. Krammer. Monoclonal-antibodymediated apoptosis in adult T-cell leukaemia, Lancet 335: 497 (1990).PubMedCrossRefGoogle Scholar
  64. 64.
    E. Rouvier, M.F. Luciani, and R. Golstein. Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity, J. Exp. Med. 177: 195 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    T. Suda and S. Nagata. Purification and characterization of the Fas-ligand that induces apoptosis, J. Exp. Med. 179: 873 (1994).PubMedCrossRefGoogle Scholar
  66. 66.
    F. Vignaux and P. Golstein. Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: a regulatory pathway? Eur. J. Immunol. 24: 923 (1994).PubMedCrossRefGoogle Scholar
  67. 67.
    G.H. Fisher, F.J. Rosenberg, S.E. Straus, J.K. Dale, L.A. Middleton, A.Y. Lin, W. Strober, M.J. Lenardo, and J.M. Puck. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell 81: 935 (1995).PubMedCrossRefGoogle Scholar
  68. 68.
    K.B. Elkon. Apoptosis in SLE-too little or too much? Clin. Exp. Rheumatol. 12: 553 (1994).PubMedGoogle Scholar
  69. 69.
    J.D. Mountz, J. Wu, J. Cheng, and T. Zhou. Autoimmune disease. A problem of defective apoptosis, Arthritis Rheum. 37: 1415 (1994).PubMedCrossRefGoogle Scholar
  70. 70.
    D. Beligrau, D. Gold, H. Selawry, J. Moore, A. Franzusoff, and R.C. Duke. A role for CD95 ligand in preventing graft rejection, Nature 377: 630 (1995).CrossRefGoogle Scholar
  71. 71.
    D.L. Vaux, S. Cory, and J.M. Adams. Bc1–2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature 335: 440 (1988).PubMedCrossRefGoogle Scholar
  72. 72.
    T.J. McDonnell, G. Nunez, F.M. Platt, D.M. Hockenbery, L. London, J.P. McKeam, and S.J. Korsmeyer. Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population, Mol. Cell Biol. 10: 1901 (1990).PubMedGoogle Scholar
  73. 73.
    D.L. Vaux, H.L. Aguila, and I.L. Weissman. Bc1–2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing, Int. Immunol. 4: 821 (1992).PubMedCrossRefGoogle Scholar
  74. 74.
    L.T. Zhong, T. Sarafian, D.J. Kane, A.C. Charles, S.P. Mah, R.H. Edwards, and D.E. Bredesen. bc1–2 inhibits death of central neural cells induced by multiple agents, Proc. Natl. Acad. Sci. U. S. A. 90: 4533 (1993).PubMedCrossRefGoogle Scholar
  75. 75.
    J.C. Reed. Bc1–2 and the regulation of programmed cell death, J. Cell Biol. 124: 1 (1994).PubMedCrossRefGoogle Scholar
  76. 76.
    L.H. Boise, M. Gonzalez-Garcia, C.E. Postema, L. Ding, T. Lindsten, L.A. Turka, X. Mao, G. Nunez, and C.B. Thompson. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74: 597 (1993).PubMedCrossRefGoogle Scholar
  77. 77.
    S.J. Korsmeyer, J.R. Shutter, D.J. Veis, D.E. Merry, and Z.N. Oltvai. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death, Semin. Cancer Biol. 4: 327 (1993).PubMedGoogle Scholar
  78. 78.
    R. Buttyan, C.A. Olsson, J. Pintar, C. Chang, M.G. Bandyk, P.Y. Ng, and I.S. Sawczuk. Induction of the TRPM-2 gene in cells undergoing programmed death, Mol. Cell. Biol. 9: 3473 (1989).PubMedGoogle Scholar
  79. 79.
    G.A. Garden, M. Bothwell, and E.W. Rubel. Lack of correspondence between mRNA expression for a putative cell death molecule (SGP-2) and neuronal cell death in the central nervous system, J. Neurobiol. 22: 590 (1991).PubMedCrossRefGoogle Scholar
  80. 80.
    G.P. Owens, W.E. Hahn, and J.J. Cohen. Identification of mRNAs associated with programmed cell death in immature thymocytes, Mol. Cell. Biol. 11: 4177 (1991).PubMedGoogle Scholar
  81. 81.
    T.J. Mahalik, W.E. Hahn, G.H. Clayton, and G.P. Owens. Programmed cell death in developing grafts of fetal substantia nigra, Exp. Neurol. 129: 27 (1994).PubMedCrossRefGoogle Scholar
  82. 82.
    S. Valera, N. Hussy, R.J. Evans, N. Adami, R.A. North, A. Suprenant, and G. Buell. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature 371: 516 (1994).PubMedCrossRefGoogle Scholar
  83. 83.
    G.P. Owens and J.J. Cohen. Identification of genes involved in programmed cell death, Cancer Metastasis Revs. 11: 149 (1992).CrossRefGoogle Scholar
  84. 84.
    L. Meyaard, S.A. Otto, R.R. Jonker, M.J. Mijnster, R.P.M. Keet, and F. Miedema. Programmed death of T cells in HIV-1 infection, Science 257: 217 (1992).PubMedCrossRefGoogle Scholar
  85. 85.
    J.C. Ameisen and A. Capron. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis, Immunol. Today 12: 102 (1991).PubMedCrossRefGoogle Scholar
  86. 86.
    A.G. Laurent-Crawford, B. Krust, S. Muller, Y. Riviere, M.A. Rey-Cuille, J.M. Bechet, L. Montagnier, and A.G. Hovanessian. The cytopathic effect of HIV is associated with apoptosis, Virology 185: 829 (1991).PubMedCrossRefGoogle Scholar
  87. 87.
    N.K. Banda, J. Bernier, D.K. Kurahara, R. Kurrle, N. Haigwood, R.P. Sekaly, and T.H. Finkel. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis, J. Exp. Med. 176: 1099 (1992).PubMedCrossRefGoogle Scholar
  88. 88.
    J.J. Cohen and M. al-Rubeai. Apoptosis-targeted therapies: the ‘next big thing’ in biotechnology? Trends. Biotechnol. 13: 281 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. John Cohen
    • 1
  1. 1.Department of ImmunologyUniversity of Colorado Medical SchoolDenverUSA

Personalised recommendations