Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 406))

Abstract

There is only one popular way to be conceived, but a myriad of ways to die. We die from some external force, such as an accident or foul play, or else from “natural causes”. It is interesting how good the parallel is with the cells out of which we are made. All our somatic cells arise by the process of mitosis, regardless of their location in the body or their ultimate destiny. And these cells die by either of two processes, roughly equivalent to accidents and natural causes. Just as a pathologist will determine cause of death by examining the body, we distinguish the two forms of cell death by morphology1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F.R. Kerr, A.H. Wyllie, and A.R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26: 239 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. H.M. Ellis and H.R. Horvitz. Genetic control of programmed cell death in the nematode C. elegans, Cell 44: 817 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. R.A. Lockshin and J. Beaulaton. Programmed cell death, Life Sci. 15: 1549 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. G.J. Deenen, I. van Balen, and D. Opstelten. In rat B lymphocyte genesis sixty percent is lost from the bone marrow at the transition of nondividing pre-B cell to sIgM+ B lymphocyte, the stage of Ig light chain gene expression, Eur. J. Immunol. 20:557 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. J.S. Savill, A.H. Wyllie, J.E. Henson, M.J. Walport, P.M. Henson, and C. Haslett. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages, J. Clin. Invest. 83: 865 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. E.J. Jenkinson, R. Kingston, C.A. Smith, G.T. Williams, and J.J.T. Owen. Antigen-induced apoptosis in developing T cells: a mechanism for negative selection of the T cell receptor repertoire, Eur. J. Immunol. 19: 2175 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. R.C. Duke and J.J. Cohen. IL-2 addiction: withdraw] of growth factor activates a suicide program in dependent T cells, Lymphokine Res. 5: 289 (1986).

    PubMed  CAS  Google Scholar 

  8. A. Glucksmann. Cell deaths in normal vertebrate ontogeny, Biol. Revs. 26: 59 (1951).

    Article  Google Scholar 

  9. R.C. Duke, R. Chervenak, and J.J. Cohen. Endogenous endonuclease-induced DNA fragmentation: An early event in cell-mediated cytolysis, Proc. Natl. Acad. Sci. U. S. A. 80: 6361 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. E. Durkheim, “Suicide, A Study in Sociology”, Free Press, Glencoe (1951).

    Google Scholar 

  11. J. Yuan and H.R. Horvitz. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death, Dev. Biol. 138: 33 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. A.H. Wyllie. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activation, Nature 284: 555 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. C.A. Smith, G.T. Williams, R. Kingston, E.J. Jenkinson, and J.J.T. Owen. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures, Nature 337: 181 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. K.M. Murphy, A.B. Heimberger, and D.Y. Loh. Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCR10 thymocytes in vivo, Science 250: 1720 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. K.S. Sellins and J.J. Cohen. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes, J. Immunol. 139: 3199 (1987).

    PubMed  CAS  Google Scholar 

  16. D.J. McConkey, P. Hartzell, S.K. Duddy, H. Hakansson, and S. Orrenius. 2,3,7,8-Tetrachlorodibenzo-pdioxin kills immature thymocytes by Ca++-mediated endonuclease activation, Science 242: 256 (1988).

    Google Scholar 

  17. K.S. Sellins and J.J. Cohen. Hyperthermia induces apoptosis in thymocytes, Radiat. Res. 126: 88 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. C.J. Sanderson, Morphological aspects of lymphocyte mediated cytotoxicity, in: “Mechanisms of Cell-Mediated Cytotoxicity”, W.R. Clark, and P. Golstein, eds. Plenum Press, New York (1982).

    Google Scholar 

  19. G.C. Godman, A.F. Miranda, A.D. Deitch, and S.W. Tanenbaum. Action of cytochalasin D on cells of established lines. III Zeiosis and movements at the cell surface, J. Cell Biol. 64: 644 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. L. Fesus, P.J. Davies, and M. Piacentini. Apoptosis: molecular mechanisms in programmed cell death, Eur. J. Cell Biol. 56: 170 (1991).

    PubMed  CAS  Google Scholar 

  21. M.A. Kolber, K.O. Broschat, and B. Landa-Gonzalez. Cytochalasin B induces cellular DNA fragmentation, FASEB J. 4: 3021 (1990).

    PubMed  CAS  Google Scholar 

  22. N.P. Matylevich, B.A. Korol, P.A. Nelipovich, V.N. Afanasev, and S.R. Umansky. [D2O inhibition of interphase thymocyte death], Radiobiologiia 31: 27 (1991).

    PubMed  CAS  Google Scholar 

  23. Blumenthal, D.K. and Krebs, E.G. Calmodulin-binding domains. In: Calmodulin, edited by Cohen, P. and Klee, C.B. Amsterdam: Elsevier, 1988, p. 341–355.

    Google Scholar 

  24. S.J. Martin, G.A. O’Brien, W.K. Nishioka, A.J. McGahon, A. Mahboubi, T.C. Saido, and D.R. Green. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis, J. Biol. Chem. 270: 6425 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. V.A. Fadok, D.R. Voelker, P.A. Campbell, J.J. Cohen, D.L. Bratton, and P.M. Henson. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol. 148: 2207 (1992).

    PubMed  CAS  Google Scholar 

  26. V.A. Fadok, J.S. Savill, C. Haslett, D.L. Bratton, D.E. Doherty, P.A. Campbell, and P.M. Henson. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells, J. Immunol. 149: 4029 (1992).

    PubMed  CAS  Google Scholar 

  27. J.S. Savill, V. Fadok, P. Henson, and C. Haslett. Phagocyte recognition of cells undergoing apoptosis, Immunol. Today 14: 131 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. L.C. Meagher, J.S. Savill, A. Baker, R.W. Fuller, and C. Haslett. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2, J. Leukoc. Biol. 52: 269 (1992).

    PubMed  CAS  Google Scholar 

  29. A.H. Wyllie, Cell death: a new classification separating apoptosis from necrosis, in: “Cell Death in Biology and Pathology”, I.D. Bowen and R.A. Lockshin, eds., Chapman & Hall, London (1981).

    Google Scholar 

  30. J.A. Cidlowski. Glucocorticoids stimulate ribonucleic acid degradation in isolated rat thymic lymphocytes in vitro, Endocrinology 111: 184 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. R.G. MacDonald and J.A. Cidlowski. Glucocorticoid-stimulated protein degradation in lymphocytes: quantitation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Arch. Biochem. Biophys. 212: 399 (1981).

    Article  CAS  Google Scholar 

  32. T. Crompton, M.C. Peitsch, H.R. MacDonald, and J. Tschopp. Propidium iodide staining correlates with the extent of DNA degradation in isolated nuclei, Biochem. Biophys. Res. Commun. 183: 532 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. C. Dive, C.D. Gregory, D.J. Phipps, D.L. Evans, A.E. Milner, and A.H. Wyllie. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry, Biochim. Biophys. Acta 1133: 275 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. M.G. Ormerod, M.K. Collins, G. Rodriguez-Tarduchy, and D. Robertson. Apoptosis in interleukin-3-dependent haemopoietic cells. Quantification by two flow cytometric methods, J. Immunol. Methods 153: 57 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. X.-M. Sun, R.T. Snowden, D.N. Skilleter, D. Dinsdale, M.G. Ormerod, and G.M. Cohen. A flow-cytometric method for the separation and quantitation of normal and apoptotic thymocytes, Anal. Biochem. 204: 351 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. W.G. Telford, L.E. King, and P.J. Fraker. Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry, Cytometry 13: 137 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. Z. Darzynkiewicz, S. Bruno, G. Del Bino, W. Gorczyca, M.A. Hotz, P. Lassota, and F. Traganos. Features of apoptotic cells measured by flow cytometry, Cytometry 13: 795 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. G.M. Cohen, X.-M. Sun, R.T. Snowden, D. Dinsdale, and D.N. Skilleter. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation, Biochem. J. 286: 331 (1992).

    PubMed  CAS  Google Scholar 

  39. K.S. Sellins and J.J. Cohen. Cytotoxic T lymphocytes induce different types of DNA damage in target cells of different origins, J. Immunol. 147: 795 (1991).

    PubMed  CAS  Google Scholar 

  40. G.M. Cohen, X.M. Sun, H. Fearnhead, M. MacFarlane, D.G. Brown, R.T. Snowden, and D. Dinsdale. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes, J. Immunol. 153: 507 (1994).

    PubMed  CAS  Google Scholar 

  41. D.J. McConkey, P. Hartzell, P. Nicotera, and S. Orrenius. Calcium-activated DNA fragmentation kills immature thymocytes, FASEB J. 3: 1843 (1989).

    PubMed  CAS  Google Scholar 

  42. Y.F. Shi, M.G. Szalay, L. Paskar, M. Boyer, B. Singh, and D.R. Green. Activation-induced cell death in T cell hybridomas is due to apoptosis. Morphologic aspects and DNA fragmentation, J. Immunol. 144: 3326 (1990).

    PubMed  CAS  Google Scholar 

  43. T. Crompton. IL3-dependent cells die by apoptosis on removal of their growth factor, Growth Factors 4: 109 (1991).

    Article  PubMed  CAS  Google Scholar 

  44. M.D. Jacobson, J.F. Burne, and M.C. Raff. Programmed cell death and Bc1–2 protection in the absence of a nucleus, EMBO J. 13: 1899 (1994).

    PubMed  CAS  Google Scholar 

  45. J.J. Cohen. Programmed cell death in the immune system, Adv. Immunol. 50: 55 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. S.V. Lennon, S.J. Martin, and T.G. Cotter. Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli, Biochem. Soc. Trans. 18: 343 (1990).

    PubMed  CAS  Google Scholar 

  47. J.J. Cohen and R.C. Duke. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38 (1984).

    PubMed  CAS  Google Scholar 

  48. G.I. Evan, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein, Cell 69: 119 (1992).

    Article  PubMed  CAS  Google Scholar 

  49. Y.F. Shi, J.M. Glynn, L.J. Guilbert, T.G. Cotter, R.P. Bissonnette, and D.R. Green. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science 257: 212 (1992).

    Article  PubMed  CAS  Google Scholar 

  50. L. Rao, M. Debbas, P. Sabbatini, D.M. Hockenbery, S.J. Korsmeyer, and E. White. The adenovirus EIA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins, Proc. Natl. Acad. Sci. U. S. A. 89: 7742 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. J. Yuan and H.R. Horvitz. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death, Development 116: 309 (1992).

    PubMed  CAS  Google Scholar 

  52. J. Yuan, S. Shaham, S. Ledoux, H.M. Ellis, and H.R. Horvitz. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme, Cell 75: 641 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. P. Li, H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, and J. Salfeld. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock, Cell 80: 401 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. M.K. Squier, A.C. Miller, A.M. Malkinson, and J.J. Cohen. Calpain activation in apoptosis, J. Cell Physiol. 159: 229 (1994).

    Article  PubMed  CAS  Google Scholar 

  55. D. Ginsberg, D. Michael-Michalovitz, and M. Oren. Induction of growth arrest by a temperature-sensitive p53 mutant is correlated with increased nuclear localization and decreased stability of the protein, Mol. Cell. Biol. 11: 582 (1991).

    PubMed  CAS  Google Scholar 

  56. E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature 352: 345 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. R. Shaw, R. Bovey, S. Tardy, R. Sahli, B. Sordat, and J. Costa. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line, Proc. Natl. Acad. Sci. U. S. A. 89: 4495 (1992).

    Article  PubMed  CAS  Google Scholar 

  58. D.P. Lane. p53, guardian of the genome, Nature 358: 15 (1992).

    Article  PubMed  CAS  Google Scholar 

  59. T.G. Graeber, C. Osmanian, T. Jacks, D.E. Housman, C.J. Koch, S.W. Lowe, and A.J. Giaccia. Hypoxiamediated selection of cells with diminished apoptotic potential in solid tumors, Nature 379: 88 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66: 233 (1991).

    Article  PubMed  CAS  Google Scholar 

  61. A. Oehm, I. Behrmann, W. Falk, M. Pawlita, G. Maier, C. Klas, M. Li-Weber, S. Richards, J. Dhein, B.C. Trauth, and et al.. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen, J. Biol. Chem. 267: 10709 (1992).

    PubMed  CAS  Google Scholar 

  62. R. Watanabe-Fukunaga, C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature 356: 314 (1992).

    Article  PubMed  CAS  Google Scholar 

  63. K.M. Debatin, C.K. Goldmann, R. Bamford, T.A. Waldmann, and P.H. Krammer. Monoclonal-antibodymediated apoptosis in adult T-cell leukaemia, Lancet 335: 497 (1990).

    Article  PubMed  CAS  Google Scholar 

  64. E. Rouvier, M.F. Luciani, and R. Golstein. Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity, J. Exp. Med. 177: 195 (1993).

    Article  PubMed  CAS  Google Scholar 

  65. T. Suda and S. Nagata. Purification and characterization of the Fas-ligand that induces apoptosis, J. Exp. Med. 179: 873 (1994).

    Article  PubMed  CAS  Google Scholar 

  66. F. Vignaux and P. Golstein. Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: a regulatory pathway? Eur. J. Immunol. 24: 923 (1994).

    Article  PubMed  CAS  Google Scholar 

  67. G.H. Fisher, F.J. Rosenberg, S.E. Straus, J.K. Dale, L.A. Middleton, A.Y. Lin, W. Strober, M.J. Lenardo, and J.M. Puck. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell 81: 935 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. K.B. Elkon. Apoptosis in SLE-too little or too much? Clin. Exp. Rheumatol. 12: 553 (1994).

    PubMed  CAS  Google Scholar 

  69. J.D. Mountz, J. Wu, J. Cheng, and T. Zhou. Autoimmune disease. A problem of defective apoptosis, Arthritis Rheum. 37: 1415 (1994).

    Article  PubMed  CAS  Google Scholar 

  70. D. Beligrau, D. Gold, H. Selawry, J. Moore, A. Franzusoff, and R.C. Duke. A role for CD95 ligand in preventing graft rejection, Nature 377: 630 (1995).

    Article  Google Scholar 

  71. D.L. Vaux, S. Cory, and J.M. Adams. Bc1–2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature 335: 440 (1988).

    Article  PubMed  CAS  Google Scholar 

  72. T.J. McDonnell, G. Nunez, F.M. Platt, D.M. Hockenbery, L. London, J.P. McKeam, and S.J. Korsmeyer. Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population, Mol. Cell Biol. 10: 1901 (1990).

    PubMed  CAS  Google Scholar 

  73. D.L. Vaux, H.L. Aguila, and I.L. Weissman. Bc1–2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing, Int. Immunol. 4: 821 (1992).

    Article  PubMed  CAS  Google Scholar 

  74. L.T. Zhong, T. Sarafian, D.J. Kane, A.C. Charles, S.P. Mah, R.H. Edwards, and D.E. Bredesen. bc1–2 inhibits death of central neural cells induced by multiple agents, Proc. Natl. Acad. Sci. U. S. A. 90: 4533 (1993).

    Article  PubMed  CAS  Google Scholar 

  75. J.C. Reed. Bc1–2 and the regulation of programmed cell death, J. Cell Biol. 124: 1 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. L.H. Boise, M. Gonzalez-Garcia, C.E. Postema, L. Ding, T. Lindsten, L.A. Turka, X. Mao, G. Nunez, and C.B. Thompson. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74: 597 (1993).

    Article  PubMed  CAS  Google Scholar 

  77. S.J. Korsmeyer, J.R. Shutter, D.J. Veis, D.E. Merry, and Z.N. Oltvai. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death, Semin. Cancer Biol. 4: 327 (1993).

    PubMed  CAS  Google Scholar 

  78. R. Buttyan, C.A. Olsson, J. Pintar, C. Chang, M.G. Bandyk, P.Y. Ng, and I.S. Sawczuk. Induction of the TRPM-2 gene in cells undergoing programmed death, Mol. Cell. Biol. 9: 3473 (1989).

    PubMed  CAS  Google Scholar 

  79. G.A. Garden, M. Bothwell, and E.W. Rubel. Lack of correspondence between mRNA expression for a putative cell death molecule (SGP-2) and neuronal cell death in the central nervous system, J. Neurobiol. 22: 590 (1991).

    Article  PubMed  CAS  Google Scholar 

  80. G.P. Owens, W.E. Hahn, and J.J. Cohen. Identification of mRNAs associated with programmed cell death in immature thymocytes, Mol. Cell. Biol. 11: 4177 (1991).

    PubMed  CAS  Google Scholar 

  81. T.J. Mahalik, W.E. Hahn, G.H. Clayton, and G.P. Owens. Programmed cell death in developing grafts of fetal substantia nigra, Exp. Neurol. 129: 27 (1994).

    Article  PubMed  CAS  Google Scholar 

  82. S. Valera, N. Hussy, R.J. Evans, N. Adami, R.A. North, A. Suprenant, and G. Buell. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature 371: 516 (1994).

    Article  PubMed  CAS  Google Scholar 

  83. G.P. Owens and J.J. Cohen. Identification of genes involved in programmed cell death, Cancer Metastasis Revs. 11: 149 (1992).

    Article  CAS  Google Scholar 

  84. L. Meyaard, S.A. Otto, R.R. Jonker, M.J. Mijnster, R.P.M. Keet, and F. Miedema. Programmed death of T cells in HIV-1 infection, Science 257: 217 (1992).

    Article  PubMed  CAS  Google Scholar 

  85. J.C. Ameisen and A. Capron. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis, Immunol. Today 12: 102 (1991).

    Article  PubMed  CAS  Google Scholar 

  86. A.G. Laurent-Crawford, B. Krust, S. Muller, Y. Riviere, M.A. Rey-Cuille, J.M. Bechet, L. Montagnier, and A.G. Hovanessian. The cytopathic effect of HIV is associated with apoptosis, Virology 185: 829 (1991).

    Article  PubMed  CAS  Google Scholar 

  87. N.K. Banda, J. Bernier, D.K. Kurahara, R. Kurrle, N. Haigwood, R.P. Sekaly, and T.H. Finkel. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis, J. Exp. Med. 176: 1099 (1992).

    Article  PubMed  CAS  Google Scholar 

  88. J.J. Cohen and M. al-Rubeai. Apoptosis-targeted therapies: the ‘next big thing’ in biotechnology? Trends. Biotechnol. 13: 281 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, J.J. (1996). Apoptosis and Its Regulation. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics