Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 63))

Abstract

Most of the energy absorbed in the cell nucleus from a radiation field goes into the aqueous medium that surrounds macromolecules, like DNA, which are critical to the normal function of cells. This part of the energy deposition produces numerous reactive species that can diffuse to DNA sequences and induce chemical changes. The average diffusion distance of the free radicals that mediate this indirect mode of DNA damage is only a few nanometers because the cellular medium contains a high concentration of molecules that rapidly scavenge the radiation-induced species. Under these conditions, direct interaction of the radiation field with DNA can not be neglected as a potential mode of damage induction. Two aspects of the direct effect will be discussed in this paper: (1) screening of the interaction between DNA and charged particles by the dielectric response of the aqueous medium and (2) the impact-parameter dependence of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Udovicic, F. Mark, E. Bothe, and D. Shulte-Frolinde, Non-homogeneous kinetics in the competition of single-stranded calf-thymus DNA and low-molecular weight scavengers of OH radicals: a comparison of experimental data and theoretical models, Int. J. Radiat. Biol. 59: 677 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. R.H. Shuler, A.L. Hartzell, and B. Behar, Track effects in radiation chemistry. Concentration dependence of the scavenging of OH by ferrocynide in N20-saturated aqueous solutions, J. Phys. Chem. 85: 192 (1981).

    Article  Google Scholar 

  3. S.G. Swarts, M.D. Sevilla, D. Becker, C.J. Tokar, and K.T. Wheeler, Radiation-induced DNA damage as a function of hydration: I. Release of unaltered bases, Radiat. Res. 129: 333 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. N. Bohr, The decrease in velocity of alpha rays, Phil. Mag. 25: 10 (1913).

    CAS  Google Scholar 

  5. R.H. Ritchie, The interaction of charged particles with a Fermi-Dirac electron gas, Phys. Rev. 114:644 (1959). R.H. Ritchie, R.N. Hamm, J.E. Turner, and H.A. Wright, The interaction of swift electrons with liquid water, in: “Sixth Symposium on Microdosimetry,” J. Booz and H.G. Ebert, eds., CEC EUR 6064, (1978).

    Google Scholar 

  6. R.H. Ritchie, R.N. Hamm, J.E. Turner, H.A. Wright, J.C. Ashley, and G.J. Basbas, Physical aspects of charged particle track structure, Nucl. Tracks Radiat. Meas. 16:141 (1989). R.H. Ritchie, A. Howie, P.M. Echenique, G.J. Basbas, T.L. Ferrell, and J.C. Ashley, Plasmons in scanning transmission electron microscopy electron spectra, Scanning Microscopy Supplement 4: 45 (1990).

    CAS  Google Scholar 

  7. U. Fano, The formulation of track structure theory, in: “Charged Particle Tracks in Solids and Liquids,” G.E. Adams, D.K. Bewley and J.W. Boag, eds., The Institute of Physics, London (1970).

    Google Scholar 

  8. J.S. Samson, Formulation of the binary-encounter approximation in configuration space and its application to ionization by light ions, Phys. Rev., 8: 822 (1973).

    Article  Google Scholar 

  9. J.M. Heller, Jr., R.N. Hamm, R.D. Birkoff, and L.R. Painter, Collective oscillation in liquid water, J. Chem. Phys. 60: 3483 (1974).

    Article  CAS  Google Scholar 

  10. T. Inagaki, R.N. Hamm, and E.T. Arakawa, Optical and dielectric properties of DNA in the extreme ultraviolet, J. Chem. Phys. 61: 4246 (1974).

    Article  CAS  Google Scholar 

  11. R.H. Ritchie, C.J. Tung, V.E. Anderson and J.C. Ashley, Electron slowing-down spectra in solids, Radial. Res. 64:181 (1975). C.J. Tung, R.H. Ritchie, J.E. Ashley, and V.E. Anderson, Inelastic interactions of swift electrons in solids, Oak Ridge National Laboratory Report ORNL-TM-5188, (1976).

    Google Scholar 

  12. H.A. Kramers, Collected Works, North Holland Publishing Co. Amsterdam (1955), p. 333. R. Kronig, J. Am. Opt. Soc. 12, 547 (1926).

    Article  Google Scholar 

  13. M.W. Williams, R.N. Hamm, E.T. Arakawa, L.R. Painter, and R.D. Birkoff, Collective electron effects in molecular liquids, /nt. J. Rad. Phys. Chem. 7, 95 (1975).

    CAS  Google Scholar 

  14. J.C. Ashley, Stopping power of liquid water for low-energy electrons, Radial. Res. 89, 25 (1982). D.J. Brenner, Stochastic calculations of the fast decay of the hydrated electron in presence of scavengers: Tests of model consistency, Radial. Phys. Chem. 32: 157 (1988).

    Google Scholar 

  15. See ref.(5) above and R.H. Ritchie, R.N. Hamm, J.E. Turner, H.A. Wright and W.E. Bolch, Radiation Interactions and Energy Transport in the Condensed Phase, in:“Physical and Chemical Mechanisms in Molecular Radiation Biology,” W.A. Glass and M.N. Varma, eds., Plenum Press, New York (1991). The scheme described in ref.(5) and used in OREC for representing the response function of water also includes relativistic and exchange corrections. In the present application of the OPWD model, such corrections are not important.

    Google Scholar 

  16. W. Sontag and K.F. Weibezahm, Absorption of DNA in the region of vacuum-uv (3–25 eV), Rad. and Environm. Biophys. 12: 169 (1975).

    Article  CAS  Google Scholar 

  17. We have carried out calculations of the ejection of an electron from a charged center immersed in a water medium using the OREC scheme for representing the water dielectric function together with a somewhat different method for obtaining the impact parameter representation of the cross section. The results found are entirely consistent with those shown in Fig. (3).

    Google Scholar 

  18. W. Brandt and R.H. Ritchie, Primary processes in the physical stage, in: “Physical Mechanisms in Radiation Biology,” R.D. Cooper and R.W. Wood, eds., National Technical Information Center, Springfield, VA (1974).

    Google Scholar 

  19. C.J. Alden and S.-H. Kim, Solvent-accessible surfaces of nucleic acids, J. Mol. Biol. 132, 411 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. J.F. Ward, Mechanisms of radiation action on DNA in model systems - Their relevance to cellular DNA, in: “The Early Effects of Radiation on DNA,” E.M. Fielden and P.O’Neill, eds., Springer-Verlag, Berlin (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, J.H., Wilson, W.E., Ritchie, R.H. (1994). Direct Ionization of DNA in Solution. In: Varma, M.N., Chatterjee, A. (eds) Computational Approaches in Molecular Radiation Biology. Basic Life Sciences, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9788-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9788-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9790-9

  • Online ISBN: 978-1-4757-9788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics