Skip to main content

Computational Approaches in Molecular Radiation Biology

Monte Carlo Methods

  • Book
  • © 1994

Overview

Part of the book series: Basic Life Sciences (BLSC, volume 63)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

  1. Significance of Computational Biology

  2. Track Structure Code Development

  3. Comparison of Track Structure Codes

  4. Modeling of Biological Effects

Keywords

About this book

The Office of Health and Environmental Research (OHER) has supported and continues to support development of computational approaches in biology and medicine. OHER's Radiological and Chemical Physics Program initiated development of computational approaches to determine the effects produced by radiation of different quality (such as high energy electrons, protons, helium and other heavy ions, etc. ) in a variety of materials of biological interest-such as water, polymers and DNA; these include molecular excitations and sub-excitations and the production of ionization and their spatial and temporal distribution. In the past several years, significant advances have been made in computational methods for this purpose. In particular, codes based on Monte Carlo techniques have ·been developed that provide a realistic description of track-structure produced by charged particles. In addition, the codes have become sufficiently sophisticated so that it is now possible to calculate the spatial and temporal distribution of energy deposition patterns in small volumes of subnanometer and nanometer dimensions. These dimensions or resolution levels are relevant for our understanding of mechanisms at the molecular level by which radiations affect biological systems. Since the Monte Carlo track structure codes for use in radiation chemistry and radiation biology are still in the developmental stage, a number of investigators have been exploring different strategies for improving these codes.

Editors and Affiliations

  • U.S. Department of Energy, Gaithersburg, USA

    Matesh N. Varma

  • Lawrence Berkeley Laboratory, Berkeley, USA

    Aloke Chatterjee

Bibliographic Information

Publish with us