Skip to main content

Comparison of Various Monte Carlo Track Structure Codes for Energetic Electrons in Gaseous and Liquid Water

  • Chapter
Computational Approaches in Molecular Radiation Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 63))

Abstract

Cross sections for kurbuc, a Monte Carlo track structure code simulating histories of electrons, molecular interaction by interaction, in the energy range of 10 eV to 10 MeV, have been presented. Comparisons have been made for four independent Monte Carlo track structure codes for energetic electrons in gaseous and liquid water. The comparisons have been made in terms of point kernels for interactions and energy absorbed, and frequencies of energy depositions in cylindrical volumes of sizes similar to biological macromolecules. Comparisons have been made for 100 eV, 300 eV, 500 eV, 1 keV, 10 keV and 100 keV monoenergetic electrons. The four electron codes used in this study are moca8b and kurbuc for water vapour and orec and cpa100 for liquid water. A summary of cross sections used in each code has been presented. The comparisons show similarities and differences in clustering properties of the four codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Metropolis and S. Ulem. The Monte Carlo Method. Journal of the American Statistical Association 44: 335–341 No. 247 (1949).

    Google Scholar 

  2. M.J. Berger. Monte Carlo Calculations of the Penetration and Diffusion of Fast Charged Particles. In Methods in Computational Physics, B. Alder, S. Fernback and M. Rotenberg (eds.), pp. 135, Vol 1. Academic Press, New York (1963).

    Google Scholar 

  3. D.E. Raeside. Monte Carlo Principles and Applications. Phys. Med. Biol. 21: 181 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. J.E. Turner, H.A. Wright and R.N. Hamm. Review Article: A Monte Carlo Primer for Health Physicists. Health Phys. 48: 717 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. I.M. Sobol. The Monte Carlo Method. The University of Chicargo Press, London (1974).

    Google Scholar 

  6. R.L. Morin. Monte Carlo Simulation in the Radiological Sciences. CRC Press (1988).

    Google Scholar 

  7. I. Lux, L. Koblinger. Monte Carlo Particle Transport Method: Neutron and Photon Calculations. CRC Press (1990).

    Google Scholar 

  8. H.G. Paretzke. Simulation von Elektronenspuren im Energiebereich 0,01–10 keV in Wasserdampf

    Google Scholar 

  9. R.N. Hamm, J.E. Turner, R.H. Ritchie, H.A. Wright. Calculation of heavy-ion tracks in liquid water. Radiat Res. 104:S-20–-S-26 (1985).

    Google Scholar 

  10. M. Terrissol, J.P. Patau, T. Eudaldo. Application a la microdosimetrie et a la radiobiologie de la simulation du transport des electrons de basse energie dans l’eau a l’etat liquide. In Sixth Symposium on Microdosimetry J. Booz and H.G. Ebert (eds.), pp. 169–178, Harwood Academic Publishers Ltd (1988).

    Google Scholar 

  11. M. Zaider, D.J. Brenner and W.E. Wilson. The Applications of Track Calculations to Radiobiology 1. Monte Carlo Simulation of Proton Tracks. Radiat. Res. 95: 231–247 (1983).

    Article  CAS  Google Scholar 

  12. A. Ito. Calculation of Double Strand Break Probability of DNA for Low LET Radiations Based on Track Structure Analysis. In Nuclear and Atomic Data for Radiotherapy and Related Radiobiology, International Atomic Energy Agency, Vienna (1987).

    Google Scholar 

  13. I.G. Kaplan, A.M. Miterev and V.Ya. Sukhonosov. Simulation of the Primary Stage of Liquid Water Radiolysis. Radiat. Phys. Chem. 36: 493–498 (1990).

    CAS  Google Scholar 

  14. A.V. Lappa, E.A. Bigildeev, D.S. Burmistrov and O.N. Vasilyev. “Trion” code for radiation action calculations and its application in microdosimetry and radiobiology. Radiat. Environ. Biophys. 32: 1–19 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. MA. Hill and F.A. Smith. Calculation of initial and primary yields in the radiolysis of water. Radiat. Phys. Chem. (in press) (1993).

    Google Scholar 

  16. S. Uehara, H. Nikjoo and D.T. Goodhead. Cross-sections for water vapour for Monte Carlo electron track structure code from 10 eV to MeV region. Phys. Med. Biol. 38: 1841–1858 (1993).

    Article  Google Scholar 

  17. J.E. Turner, H.G. Paretzke, R.N. Hamm, H.A. Wright and R.H. Ritchie. Comparative study of electron energy deposition and yields in water in the liquid and vapour phases. Radiat. Res. 92: 47–60 (1982).

    Article  Google Scholar 

  18. J.E. Turner, H.G. Paretzke, R.N. Hamm, H.A. Wright and R.H. Ritchie. Comparision of electron transport calculations for water in the liquid and vapour phases. In Proceedings of 8th Symposium on Microdosimetry, J. Booz and H.G. Ebert (eds.), Commission of the European Communities, Luxembourg (1983).

    Google Scholar 

  19. H.G. Paretzke, J.E. Turner, R.N. Hamm, H.A. Wright and R.H. Ritchie. Calculated yields and fluctuations for electron degradation in liquid water and water vapour. J. Chem. Phys. 84: 3182–3188 (1986).

    Article  CAS  Google Scholar 

  20. H.G. Paretzke, J.E. Turner, R.N. Hamm, R.H. Ritchie and H.A. Wright. Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiat. Res.127:121–129 (1991).

    Google Scholar 

  21. H. Nishimura. Elastic Scattering Cross-Section of H2O by Low Energy Electrons. Electronic and Atomic Collisions, Proc. XIth Int. Conf., eds N. Oda and K. Takayanagi, North Holland, Amsterdam, p. 314, (1979).

    Google Scholar 

  22. S. Trajmar, D.F. Register and A. Chutjian. Electron Scattering by Molecules. II. Experimental Methods and Data. Physics Reports 97, 219–356 (1983).

    Article  CAS  Google Scholar 

  23. A. Katase, K. Ishibashi, Y. Matsumoto, T. Sakae, S. Maezono, E. Murakami, K. Watanabe and H. Maki. Elastic Scattering of Electrons by Water Molecules over the range 100–1000 eV. J. Phys. B: At. Mol. Phys., 19: 2715–2734 (1986).

    Article  CAS  Google Scholar 

  24. S.M. Seltzer. Cross-Sections for Bremsstrahlung Production and Electron-Impact Ionization. In: Monte Carlo Transport of Electrons and Photons. eds T.M. Jenkins, W.R. Nelson and A. Rindi, Plenum Press, New York, pp. 81–114 (1988).

    Google Scholar 

  25. M.J. Berger and R. Wang. Multiple Scattering Angular Deflections and Energy-Loss Straggling. In: Monte Carlo Transport of Electrons and Photons. eds. T.M. Jenkins, W.R. Nelson and A. Rindi, Plenum Press, New York, pp. 21–56, (1988).

    Google Scholar 

  26. M. Hayashi. Electron collision cross-sections for atoms and molecules determined from beam and swarm data. In Atomic and Molecular Data for Radiotherapy. IAEA, Vienna (1989), IAEA-TECDOC-SO6.

    Google Scholar 

  27. C.B. Opal, E.C. Beaty, W.K. Peterson. Tables of secondary-electron-production cross sections. Atomic Data, 4: 209–253 (1972).

    Article  CAS  Google Scholar 

  28. H. Nikjoo, M. Terrissol, R.N. Hamm, J.E. Turner, S. Uehara, H.G. Paretzke and D.T. Goodhead. Comparison of Energy Deposition in Small Cylindrical Volumes by Electrons Generated by Monte Carlo Track Structure Codes for Gaseous and Liquid Water. Radiat. Protec. Dosimetry,(in press) (1994).

    Google Scholar 

  29. H. Nikjoo, D.T. Goodhead, D.E. Charlton and H.G. Paretzke. Energy Deposition in Small Cylindrical Targets by Ultrasoft X-rays. Phys. Med. Biol. 34: 691–705 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. D.E. Charlton, H. Nikjoo and D.T. Goodhead. Energy deposition in sub-microscopic volumes in Radiation Research (A twentieth-century perspective) Vol II, W.C. Dewey, M. Edington, R.J.M. Fry, E.J. Hall, G.F. Whitmore (eds.), Academic Press, London (1992).

    Google Scholar 

  31. D.T. Goodhead and H. Nikjoo. Track Structure Analysis of Ultrasoft X-rays Compared to High-and Low - LET Radiations. /nt. J. Radiat. Biol. 55: 513–529 (1989).

    Article  CAS  Google Scholar 

  32. E.M. Fielden and P. O’Neill. The Early Effects of Radiation on DNA. Springer-Verlag, London (1990).

    Google Scholar 

  33. G.R. Freeman. Kinetics of Nonhomogeneous Processes. John Wiley and Sons (1987).

    Google Scholar 

  34. K.F. Baverstock and J.W. Stather. Low Dose Radiation. Taylor and Francis (1989).

    Google Scholar 

  35. K.F. Baverstock and D.G. Charlton. DNA Damage by Auger Emitters. Taylor and Francis (1988).

    Google Scholar 

  36. R.W. Howell, V.R. Narra, K.S.R. Sastry and D. V. Rao. Biophysical Aspects of Auger Processes. AAPM (1992).

    Google Scholar 

  37. M. Terrissol and A. Beaudré. Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water. Rad. Prot. Dosim. 31: 175–177 (1990).

    CAS  Google Scholar 

  38. D.E. Charlton, H. Nikjoo and J. Humm. Calculation of Initial Yields of Single and Double Strand Breaks in Cell Nuclei from Electrons, Protons and Alpha-Particles. Int. J. Radiat. Biol. 55: 1–19 (1989).

    Article  Google Scholar 

  39. W.R. Holley and A. Chatterjee. The Application of Chemical Models to Cellular DNA. In: The Early Effects of Radiations on DNA. eds E.M. Fielden and P. O’Neill, Springer-Verlag, pp. 195–209 (1990).

    Google Scholar 

  40. R.N. Hamm and J.E. Turner. Model Calculations of Radiation-Induced DNA Damage. In: Biophysical Modelling of Radiation Effects. eds K.H. Chadwich, G. Moschini and M.N. Varma, Adam Hilger, New York, pp. 53–60 (1992).

    Google Scholar 

  41. S. Henß and H.G. Paretzke. Biophysical Modelling of Radiation Induced Damage in Chromosomes. In: Biophysical Modelling of Radiation Effects. eds K.H. Chadwich, G. Moschini and M.N. Varma, Adam Hilger, New York, pp. 69–76 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nikjoo, H., Uehara, S. (1994). Comparison of Various Monte Carlo Track Structure Codes for Energetic Electrons in Gaseous and Liquid Water. In: Varma, M.N., Chatterjee, A. (eds) Computational Approaches in Molecular Radiation Biology. Basic Life Sciences, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9788-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9788-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9790-9

  • Online ISBN: 978-1-4757-9788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics