Advertisement

Comparison of Various Monte Carlo Track Structure Codes for Energetic Electrons in Gaseous and Liquid Water

  • Hooshang Nikjoo
  • Shuzo Uehara
Part of the Basic Life Sciences book series (BLSC, volume 63)

Abstract

Cross sections for kurbuc, a Monte Carlo track structure code simulating histories of electrons, molecular interaction by interaction, in the energy range of 10 eV to 10 MeV, have been presented. Comparisons have been made for four independent Monte Carlo track structure codes for energetic electrons in gaseous and liquid water. The comparisons have been made in terms of point kernels for interactions and energy absorbed, and frequencies of energy depositions in cylindrical volumes of sizes similar to biological macromolecules. Comparisons have been made for 100 eV, 300 eV, 500 eV, 1 keV, 10 keV and 100 keV monoenergetic electrons. The four electron codes used in this study are moca8b and kurbuc for water vapour and orec and cpa100 for liquid water. A summary of cross sections used in each code has been presented. The comparisons show similarities and differences in clustering properties of the four codes.

Keywords

Liquid Water Energy Deposition Energetic Electron Chromatin Fibre Track Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Metropolis and S. Ulem. The Monte Carlo Method. Journal of the American Statistical Association 44: 335–341 No. 247 (1949).Google Scholar
  2. 2.
    M.J. Berger. Monte Carlo Calculations of the Penetration and Diffusion of Fast Charged Particles. In Methods in Computational Physics, B. Alder, S. Fernback and M. Rotenberg (eds.), pp. 135, Vol 1. Academic Press, New York (1963).Google Scholar
  3. 3.
    D.E. Raeside. Monte Carlo Principles and Applications. Phys. Med. Biol. 21: 181 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    J.E. Turner, H.A. Wright and R.N. Hamm. Review Article: A Monte Carlo Primer for Health Physicists. Health Phys. 48: 717 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    I.M. Sobol. The Monte Carlo Method. The University of Chicargo Press, London (1974).Google Scholar
  6. 6.
    R.L. Morin. Monte Carlo Simulation in the Radiological Sciences. CRC Press (1988).Google Scholar
  7. 7.
    I. Lux, L. Koblinger. Monte Carlo Particle Transport Method: Neutron and Photon Calculations. CRC Press (1990).Google Scholar
  8. 8.
    H.G. Paretzke. Simulation von Elektronenspuren im Energiebereich 0,01–10 keV in WasserdampfGoogle Scholar
  9. 9.
    R.N. Hamm, J.E. Turner, R.H. Ritchie, H.A. Wright. Calculation of heavy-ion tracks in liquid water. Radiat Res. 104:S-20–-S-26 (1985).Google Scholar
  10. 10.
    M. Terrissol, J.P. Patau, T. Eudaldo. Application a la microdosimetrie et a la radiobiologie de la simulation du transport des electrons de basse energie dans l’eau a l’etat liquide. In Sixth Symposium on Microdosimetry J. Booz and H.G. Ebert (eds.), pp. 169–178, Harwood Academic Publishers Ltd (1988).Google Scholar
  11. 11.
    M. Zaider, D.J. Brenner and W.E. Wilson. The Applications of Track Calculations to Radiobiology 1. Monte Carlo Simulation of Proton Tracks. Radiat. Res. 95: 231–247 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Ito. Calculation of Double Strand Break Probability of DNA for Low LET Radiations Based on Track Structure Analysis. In Nuclear and Atomic Data for Radiotherapy and Related Radiobiology, International Atomic Energy Agency, Vienna (1987).Google Scholar
  13. 13.
    I.G. Kaplan, A.M. Miterev and V.Ya. Sukhonosov. Simulation of the Primary Stage of Liquid Water Radiolysis. Radiat. Phys. Chem. 36: 493–498 (1990).Google Scholar
  14. 14.
    A.V. Lappa, E.A. Bigildeev, D.S. Burmistrov and O.N. Vasilyev. “Trion” code for radiation action calculations and its application in microdosimetry and radiobiology. Radiat. Environ. Biophys. 32: 1–19 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    MA. Hill and F.A. Smith. Calculation of initial and primary yields in the radiolysis of water. Radiat. Phys. Chem. (in press) (1993).Google Scholar
  16. 16.
    S. Uehara, H. Nikjoo and D.T. Goodhead. Cross-sections for water vapour for Monte Carlo electron track structure code from 10 eV to MeV region. Phys. Med. Biol. 38: 1841–1858 (1993).CrossRefGoogle Scholar
  17. 17.
    J.E. Turner, H.G. Paretzke, R.N. Hamm, H.A. Wright and R.H. Ritchie. Comparative study of electron energy deposition and yields in water in the liquid and vapour phases. Radiat. Res. 92: 47–60 (1982).CrossRefGoogle Scholar
  18. 18.
    J.E. Turner, H.G. Paretzke, R.N. Hamm, H.A. Wright and R.H. Ritchie. Comparision of electron transport calculations for water in the liquid and vapour phases. In Proceedings of 8th Symposium on Microdosimetry, J. Booz and H.G. Ebert (eds.), Commission of the European Communities, Luxembourg (1983).Google Scholar
  19. 19.
    H.G. Paretzke, J.E. Turner, R.N. Hamm, H.A. Wright and R.H. Ritchie. Calculated yields and fluctuations for electron degradation in liquid water and water vapour. J. Chem. Phys. 84: 3182–3188 (1986).CrossRefGoogle Scholar
  20. 20.
    H.G. Paretzke, J.E. Turner, R.N. Hamm, R.H. Ritchie and H.A. Wright. Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiat. Res.127:121–129 (1991).Google Scholar
  21. 21.
    H. Nishimura. Elastic Scattering Cross-Section of H2O by Low Energy Electrons. Electronic and Atomic Collisions, Proc. XIth Int. Conf., eds N. Oda and K. Takayanagi, North Holland, Amsterdam, p. 314, (1979).Google Scholar
  22. 22.
    S. Trajmar, D.F. Register and A. Chutjian. Electron Scattering by Molecules. II. Experimental Methods and Data. Physics Reports 97, 219–356 (1983).CrossRefGoogle Scholar
  23. 23.
    A. Katase, K. Ishibashi, Y. Matsumoto, T. Sakae, S. Maezono, E. Murakami, K. Watanabe and H. Maki. Elastic Scattering of Electrons by Water Molecules over the range 100–1000 eV. J. Phys. B: At. Mol. Phys., 19: 2715–2734 (1986).CrossRefGoogle Scholar
  24. 24.
    S.M. Seltzer. Cross-Sections for Bremsstrahlung Production and Electron-Impact Ionization. In: Monte Carlo Transport of Electrons and Photons. eds T.M. Jenkins, W.R. Nelson and A. Rindi, Plenum Press, New York, pp. 81–114 (1988).Google Scholar
  25. 25.
    M.J. Berger and R. Wang. Multiple Scattering Angular Deflections and Energy-Loss Straggling. In: Monte Carlo Transport of Electrons and Photons. eds. T.M. Jenkins, W.R. Nelson and A. Rindi, Plenum Press, New York, pp. 21–56, (1988).Google Scholar
  26. 26.
    M. Hayashi. Electron collision cross-sections for atoms and molecules determined from beam and swarm data. In Atomic and Molecular Data for Radiotherapy. IAEA, Vienna (1989), IAEA-TECDOC-SO6.Google Scholar
  27. 27.
    C.B. Opal, E.C. Beaty, W.K. Peterson. Tables of secondary-electron-production cross sections. Atomic Data, 4: 209–253 (1972).CrossRefGoogle Scholar
  28. 28.
    H. Nikjoo, M. Terrissol, R.N. Hamm, J.E. Turner, S. Uehara, H.G. Paretzke and D.T. Goodhead. Comparison of Energy Deposition in Small Cylindrical Volumes by Electrons Generated by Monte Carlo Track Structure Codes for Gaseous and Liquid Water. Radiat. Protec. Dosimetry,(in press) (1994).Google Scholar
  29. 29.
    H. Nikjoo, D.T. Goodhead, D.E. Charlton and H.G. Paretzke. Energy Deposition in Small Cylindrical Targets by Ultrasoft X-rays. Phys. Med. Biol. 34: 691–705 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    D.E. Charlton, H. Nikjoo and D.T. Goodhead. Energy deposition in sub-microscopic volumes in Radiation Research (A twentieth-century perspective) Vol II, W.C. Dewey, M. Edington, R.J.M. Fry, E.J. Hall, G.F. Whitmore (eds.), Academic Press, London (1992).Google Scholar
  31. 31.
    D.T. Goodhead and H. Nikjoo. Track Structure Analysis of Ultrasoft X-rays Compared to High-and Low - LET Radiations. /nt. J. Radiat. Biol. 55: 513–529 (1989).CrossRefGoogle Scholar
  32. 32.
    E.M. Fielden and P. O’Neill. The Early Effects of Radiation on DNA. Springer-Verlag, London (1990).Google Scholar
  33. 33.
    G.R. Freeman. Kinetics of Nonhomogeneous Processes. John Wiley and Sons (1987).Google Scholar
  34. 34.
    K.F. Baverstock and J.W. Stather. Low Dose Radiation. Taylor and Francis (1989).Google Scholar
  35. 35.
    K.F. Baverstock and D.G. Charlton. DNA Damage by Auger Emitters. Taylor and Francis (1988).Google Scholar
  36. 36.
    R.W. Howell, V.R. Narra, K.S.R. Sastry and D. V. Rao. Biophysical Aspects of Auger Processes. AAPM (1992).Google Scholar
  37. 37.
    M. Terrissol and A. Beaudré. Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water. Rad. Prot. Dosim. 31: 175–177 (1990).Google Scholar
  38. 38.
    D.E. Charlton, H. Nikjoo and J. Humm. Calculation of Initial Yields of Single and Double Strand Breaks in Cell Nuclei from Electrons, Protons and Alpha-Particles. Int. J. Radiat. Biol. 55: 1–19 (1989).CrossRefGoogle Scholar
  39. 39.
    W.R. Holley and A. Chatterjee. The Application of Chemical Models to Cellular DNA. In: The Early Effects of Radiations on DNA. eds E.M. Fielden and P. O’Neill, Springer-Verlag, pp. 195–209 (1990).Google Scholar
  40. 40.
    R.N. Hamm and J.E. Turner. Model Calculations of Radiation-Induced DNA Damage. In: Biophysical Modelling of Radiation Effects. eds K.H. Chadwich, G. Moschini and M.N. Varma, Adam Hilger, New York, pp. 53–60 (1992).Google Scholar
  41. 41.
    S. Henß and H.G. Paretzke. Biophysical Modelling of Radiation Induced Damage in Chromosomes. In: Biophysical Modelling of Radiation Effects. eds K.H. Chadwich, G. Moschini and M.N. Varma, Adam Hilger, New York, pp. 69–76 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Hooshang Nikjoo
    • 1
  • Shuzo Uehara
    • 2
  1. 1.MRC Radiobiology UnitChilton, OxonUK
  2. 2.School of Health SciencesKyushu UniversityHigashi-Ku, FukukaJapan

Personalised recommendations