Preparation and Examination of Labelled Stereoisomers in Vivo by Pet

  • Christer Halldin
  • Tetsuya Suhara
  • Lars Farde
  • Göran Sedvall


The preparation and PET-examination of radiolabeled stereoisomers following administration i.v. are discussed as an approach for radioligand development. Stereospecificity has been demonstrated for drug binding to plasma proteins. Active transport across membranes is also sterospecific, whereas diffusion is related to lipophilicity which like other physicochemical properties is identical for an enatiomeric pair. Of major importance is that stereospecificity is a basic criterion on specific binding to a receptor, an enzyme or a transport mechanism. The enantiomer with specific binding should have a higher accumulation in a target region in vivo than that with no biochemical activity. Comparative PET studies with enantiomers have been suggested as a method to differentiate specific from nonspecific binding, which is the key problem in quantitative modeling. The usefulness of this method has been demonstrated by PET for several enantiomeric pairs and data regarding this topic with the enantiomers of the dopamine D-2 and D-l receptor antagonists [11C]raclopride and [11C]SCH 23390 are demonstrated in this communication. Another dopamine D-l receptor antagonist, [11C]SCH 39166, and one of its three inactive stereoisomers [11C]SCH 39165 are used together as an example where HPLC plasma metabolite analysis may demonstrate that stereoisomers can bind to plasma proteins differently. Data obtained with the enantiomers of other radiotracers for PET such as [11C]piquindone, [11C]deprenyl, [11C]nicotine and [11C]methionine are also reviewed.


Positron Emission Tomography Positron Emission Tomography Study Methyl Iodide Ethyl Iodide Enantiomeric Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger J.G., Chang W.K., Cladcr J.W., Hou D., Chipkin R.E. and McPhail A.T. (1989) Synthesis and eceptor affinities of some conformationally restricted analogues of the dopamine D] selective ligand (5R)-8-chloro-2,3,4,5-tetrahydro-3-mcthyl-5-phenyl-1H-3-benzazepin-7-ol J. Med. Chem. 32, 1913–1921.PubMedCrossRefGoogle Scholar
  2. Bergström M., Lundqvist H., Ericsson K., Lilja A., Johnström P., Långström B., von Holst H., Eriksson L. and Blomqvist G. (1987a) Comparison of the accumulation kinetics of L-(methyl-11C-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol. 28, 225–229.PubMedCrossRefGoogle Scholar
  3. Bergström M., Muhr C., Lundberg P.O., Bergström K., Lundqvist H., Antoni G., Fasth K.-J. and Långström B. (1987b) Amino acid distribution and metabolism in pituitary adenomas using poaitron emission tomography with D-(11C)mcthionine and L-(11Cmethionine. J. Comput. Assist. Tomogr. 11, 384–389.PubMedCrossRefGoogle Scholar
  4. Bergström M., Muhr C., Ericsson K., Lundqvist H., Lilja A., Eriksson L., Blomqvist G., Långström B. and Johnström P. (1987c) The normal pituitary examined with poaitron emission tomography and (methyl-11C)-L-methionine and (methyl-11C)-D-methionine. Neuroradiology 29, 221–225.PubMedCrossRefGoogle Scholar
  5. Billings J.J., Kung M.-P., Chumpradit S., Mozley D., Alavi A. and Kung H.F. (1992) Characterization of radioiodinatcd TISCH: a high-affinity and selective ligand for mapping CNS D1 dopamine receptor. J. Neurochem. 58, 227–236.PubMedCrossRefGoogle Scholar
  6. Bolster J.M., Vaalburg W., Elsinga H., Wijnberg H and Woldring M.G. (1986a) Synthesis of D/L [111C]-methionine. Appl. Radiat. Isot. 37, 1067–1070.Google Scholar
  7. Bolster J.M., Vaalburg W., Paans A.M.J., van Dijk T.H., Elsinga P.H., Zijlstra J.B., Piers D.A., Mulder N.H., Woldring M.G. and Wynberg H. (1986b) Carbon-11 labelled tyrosine to study tumor metabolism by positron emission tomography (PET). Eur. J. Nucl. Med. 12, 321–324.PubMedCrossRefGoogle Scholar
  8. Brücke T., Podreka I., Angelberger P., Wenger S., Topitz A., Küffcrle B., Müller Ch. and Deecke L. 1991) Dopamine D2 receptor receptor imaging with SPECT: studies in different neuropsychiatric disoreders. J. Cereh. Blood Flow Metab. 11, 220–228.CrossRefGoogle Scholar
  9. Casey D.L., Digenis G.A., Wesner D.A., Washburn L.C., Chaney J.E., Hayes R.L. and Callahan A.P. (1981) Preparation and preliminary tissue studies of optically active 11C-D- and L-pheylalaninc. Int. J. Appl. Radial, hot. 32, 325–330.CrossRefGoogle Scholar
  10. Chipkin R.E., Iorio L.C., Coffin V.L., Mcquadc R.D., Berger J.G. and Barnett A.J. (1988) Pharmacological profile of SCH 39166: A dopmanie Dl selective benzonaphtazepine with potential antipsychotic activity .Pharmacol. Exp. Ther. 247, 1093–1102.Google Scholar
  11. Comar D Cartron J.C., Mazière M. and Marazano C. (1976) Labelling and metabolism of methionine-methyl-11C. Eur. J. Nucl. Med. 1, 11–14.PubMedCrossRefGoogle Scholar
  12. Craig D.P. (1976) Discriminating interactions between chiral molecules. Top. Curr. Chem. 63, 1–48.PubMedCrossRefGoogle Scholar
  13. Dannals R.F., Långström B., Ravert H.T., Wilson A.A. and Wagner H.N.. (1988) Synthesis of adiotracers for studying muscarinic cholinergig receptors in the living human brain using positron emission tomography: [11C]dcxetimidc and [11C]levetimidc. Appl. Radiat. Isot. 39, 291–295.CrossRefGoogle Scholar
  14. Ehrin E., Farde L., de Paulis T., Eriksson L., Greitz T., Johnström P., Litton J-E., Nilsson J.L.G., Sedvall G., Stone.Elander S. and Ögren S.O. (1985) Preparation of 11C-labelled raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int. J. Appl. Radial. Isot. 36, 269–273.CrossRefGoogle Scholar
  15. Farde L., Ehrin E., Eriksson L., Grcitz T.Y., Hall H., Hedström C.G., Litton J-E. and Sedvall G. (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc. Natl. Acad. Sci. USA 82, 3863–3867.PubMedCrossRefGoogle Scholar
  16. Farde L., Hall H., Ehrin E. and Scdvall G. (1986) Quantitative analysis of dopamine D2 receptor binding in the living human brain by positron emission tomography. Science 231, 258–261.PubMedCrossRefGoogle Scholar
  17. Farde L., Halldin C., Stone-Elander S. and Sedvall G. (1987a) Analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharm. 92, 278–284.CrossRefGoogle Scholar
  18. Farde L., Wiesel F-A., Hall H., Halldin C., Stone-Elander S. and Sedvall G. (1987b) No D2 receptor increase in PET study of schizophrenia. Arch. Gen. Psychiatry. 44, 671–672.PubMedCrossRefGoogle Scholar
  19. Farde L., Wiesel F-A., Halldin C. and Sedvall G. (1988a) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch. Gen. Psychiatry 45, 71–76.PubMedCrossRefGoogle Scholar
  20. Farde L., Pauli S., Hall H., Eriksson L., Halldin C., Högberg T., Nilsson L., Sjögren I. and Stone-Elander S. (1988b) Stereoselective binding of 11C-raclopride in living human brain — a search for extrastriatal central D2-dopamine receptors by PET. Psychoparmacology 94, 471–478.CrossRefGoogle Scholar
  21. Farde L, Eriksson L, Blomquist G, Halldin C. (1989) Kinetic analysis of 11C-raclopridc binding to D2-dopamine receptors studied by PET — a comparison to the equilibrium analysis. J. Cer. Blood Flow Met. 9, 696–708.CrossRefGoogle Scholar
  22. Farde L., Wiesel F-A., Stone-Elander S., Halldin C., Nordström A-L., Hall H. and Sedvall G. (1990) D2-dopamine receptors in neuroleptic-naive schizophrenic patients. Arch. Gen. Psychiatry. 47, 213–219.PubMedCrossRefGoogle Scholar
  23. Farde L., Nordström A.-L., Wiesel F.-A., Pauli S., Halldin C. and Scdvall G. (1992a) Positron emission tomographic analysis of central Dl and D2 dopamine receptor occupancy treated with classical neuroleptics and clozapine — relation to extrapyramidal side effects. Arch. Gen. Psychiatry. 49, 538–544.PubMedCrossRefGoogle Scholar
  24. Farde L. (1992b) Selective Dl- and D2-dopamine receptor blockade both induces akathesia in humans — a PET study with [11C]SCH 23390 and [11C]raclopridc. Psychoparmacology 107, 23–29.CrossRefGoogle Scholar
  25. Fowler J.S., Macgregor A.P., Arnett C.D., Dewey S.L., Schlyer D., Christman D., Logan J., Smith M., Sachs H., Aquilonius S.M., Bjurling P., Halldin C., Hartvig P., Leenders K.L., Lundqvist H., Oreland L., Stålnacke C.-G. and Långström B. (1987) Mapping human brain monoamine oxidase A and B with [11C]-suicide inactivators and positron emission tomography. Science 235, 481–485.PubMedCrossRefGoogle Scholar
  26. Giacomini J., Nelson W., Theodore L., Wong F., Rood D. and Giacomini K. (1985) The pharmacokinetics and pharmacodynamics of d- and dl-verapamil in rabbits. J. Cardiovasc. Pharmacol. 7, 469–475.PubMedCrossRefGoogle Scholar
  27. Hammadi A. and Crouzel C. (1991) Asymmetric synthesis of (2s)- and (2r)-4-(3-t-butylamino-2-hydroxy)-benzimidazol-2-[11C]-one ((S)- and (R)-[11C]-CGP 12177) from optically active precursors. J. Labelled. Comp. Radiopharm. 29, 681–690.CrossRefGoogle Scholar
  28. Hall H., Köhler C., Gawell L., Farde L. and Scdvall G. (1988) Raclopride, a new selective ligand for the dopamine-D2 receptors. Prog. Neuro-Psychopharmacol. and Biol. Psychiat. 12, 559–568.CrossRefGoogle Scholar
  29. Hall H., Halldin C. and Sedvall G. (1993) Binding of [3H]SCH 39166 to human post mortem brain tissue. Pharmacol. Tox.. 72, 152–158.CrossRefGoogle Scholar
  30. Halldin C., Stone-Elander S., Farde L., Ehrin E., Fasth K-J., Långström B. and Sedvall G. (1986) Preparation of 11C-labcllcd SCH 23390 for the in vivo study of dopamine D-l receptors using positron emission tomography. Appl. Radiat, Isol. 37, 1039–1043.CrossRefGoogle Scholar
  31. Halldin C., Schoeps K.-O., Stone-Elander S., Wiesel F.-A. (1987) The Bucherer-Strecker synthesis of D-and L-[1-11C]tyrosine and the in vivo study of L-[1-11C]tyrosinc in human brain using PET. Eur. J. Nucl. Med., 13, 288–291.PubMedCrossRefGoogle Scholar
  32. Halldin C., Farde L. and Scdvall G. (1990) Preparation of [11C]SCH 39166 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Appl. Radiat. Isot. 42, 2043–2049.Google Scholar
  33. Halldin C., Farde L., Högberg T., Hall H., Ström P., Ohlbcrger A. and Solin O. (1991a) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D-2 binding. Nucl. Med. Biol. 18, 871–881.Google Scholar
  34. Halldin C., Swahn C-G., Farde L., Litton J-E. and Scdvall G. (1991b) Determination of [11C]SCH 23390 and its radioactive metabolites in plasma by HPLC. Eur. J. Nucl. Med. 18, 526 (abstract).Google Scholar
  35. Halldin C., Någren K., Swahn C-G., Långström B. and Nybäck H. (1992) (S)- and (R)-[11C]nicotine and the metabolite (R/S)-[11C]cotinine. Preparation, metabolite studies and in vivo distribution in the human brain using PET. Nucl. Med. Biol. 19, 871–880.Google Scholar
  36. Halldin C., Högberg T., Hall H., Karlsson P., Hagbcrg C.-E., Styröm P. and Farde L. (1992) Preparation of [18C]NCQ 616 and [11C]FLB 457, substituted benzamides with a very high affinity for central dopamine D-2 receptors. J. Nucl. Med. 33, 860 (abstract).Google Scholar
  37. Hyttel J. (1983) SCH 23390 — the first slcctivc dopamine Dl antagonist. Eur. J. Pharmacol. 91, 153–154.PubMedCrossRefGoogle Scholar
  38. Scanley B.E., Larucllc M., Al-Tikriti M.S., Baldwin R.M., Zea-Ponce Y., Zoghbi S., Charney D.S.,Hoffer P.B., Wang S., Gao Y., Neumeyer J.L. and Innis R.B. (1993) Inactive cnantiomcr of μ-CIT: SPECT tracer of nonspecific brain uptake. J. Nucl. Med. 34, 243 (abstract).Google Scholar
  39. Iorio L.C (1981) SCH 23390. A benzazepinc with a atypical effects on dopaminergic systems. The Pharmacologist 23, 136.Google Scholar
  40. Karlsson P., Farde L., Halldin C., Chipkin R.E., Swahn C.-G. and Scdvall G. (1993). Evalustion of [11C]SCH 39166 as a selective PET ligand for D-1 dopamine receptors in the human brain. Human Psycho pharmacology, (submitted).Google Scholar
  41. Köhler C., Hall H., Ögren S-O. and Gawell L. (1985) Specific in vitro and in vivo binding of [3H]lraclopride. A potent substituted benzamide drug with high affinity for D-2 dopamine receptors in the rat brain. Biochem. Pharmacol. 34, 2251–2259.PubMedCrossRefGoogle Scholar
  42. Leenders K.L., Antonini A., Thomann R., Locher J.T., Maitre L., Gercbtzoff A., Beer H.-F., Amctamey S., Weinreich R., Gut A., Guirss E., Ofner S., Schillinig W. and Waldmcier P.C. (1993) Savoxepine: striatal dopamine-D2 receptor occupancy in human volunteers measured using positron emission tomography (PET). Eur. J. Clin. Pharmacol. 44, 135–140.PubMedCrossRefGoogle Scholar
  43. Långström B., Antoni G., Halldin C., Svärd H. and Bergson G. (1982) Synthesis of some] 11C-labelled alkaloids. Chemica Scripta 20, 46–48.Google Scholar
  44. Långström B., Antoni G., Gullberg P., Halldin C., Någren k., Rimland A. and Svärd H. (1986) The synthesis of [1-11C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions. Appl. Radial. I sot. 37, 1141–1145.Google Scholar
  45. Långström B., Antoni G., Gullberg P., Halldin C., Malmborg P., Någren K., Rimland A. and Svärd H. (1987) Synthesis of L- and D-[methyl-11C]methionine. J. Nucl. Med. 28, 1037–1340.PubMedGoogle Scholar
  46. Macgregor R., Fowler J., Wolf A., Halldin C. and Långström B. (1988) Synthesis of suicide inhibitors of monoamine oxidase Carbon-11 labelled clorgyline, L-dcprenyl and D-deprenyl. J. Lab. Compd. Radiopharm. 25, 1–9.CrossRefGoogle Scholar
  47. Mazière M., Comar D., Marazano C. and Berger G. (1976) Nicotine-11C: Synthesis and distribution kinetics in animals. Eur. J. Nucl. Med. 1, 255.PubMedCrossRefGoogle Scholar
  48. Meyer G.-J., Schober O. and Hundeshagen H. (1985) Uptake of 11C-D- and 11C-L-methioninc ion brain tumors. Eur. J. Nucl. Med. 10, 373–376.PubMedGoogle Scholar
  49. Muhr C, Bergström M., Lundbcrg P.O., Bergström K. and Långström B. (1986) In vivo measurement of dopamine receptors in pituitary adenomas using positron emission tomography. Acta Radiol. Suppl. 369, 406–408.PubMedGoogle Scholar
  50. Nordberg A. and Larsson C. (1980) Studies of muscarinic and nicotinic binding sites in brain. Acta Physiol. Scand. Suppl. 479, 19–23.PubMedGoogle Scholar
  51. Nordberg A. and Winblad B. (1986) Reduced number of (3H)nicotine and (3H)choline binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett. 72, 115–119.PubMedCrossRefGoogle Scholar
  52. Nordberg A., Hartvig P., Lundqvist H., Ulin J. and Långström B. (1989) Uptake and regional distribution of (+)-(R)- and (-)-(S)-N-[methyl-11C]nicotinc in the brains of Rhesus monkey. An attempt to study nicotinic receptors in vivo. J. Neural. Transm. 1, 195.CrossRefGoogle Scholar
  53. Nordberg A., Hartvig P., Lilja A., Viitanen M., Amberla K., Lundqvist H., Andcrsson Y., Ulin J., Winblad B. and Långström B. (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J. Neural. Transm. 2, 215–224.CrossRefGoogle Scholar
  54. Nordström A.-L., Farde L., Pauli S., Litton J.-E. and Halldin C. (1992a) PET analysis of central [11C]raclopridc binding in healthy young adults and schizophrenic patients — reliability and age effects. Human Psychopharmacology 7, 157–165.CrossRefGoogle Scholar
  55. Nordström A.-L., Farde L. and Halldin C. (1992b) Time cource of D2-dopaminc receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology 106, 433–438.PubMedCrossRefGoogle Scholar
  56. Nordström A.-L., Farde L., Wiesel F.-A., Forslund K., Pauli S., Halldin C., and Uppfeldt G. (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double blind PET study of schizophrenic patients. Biological Psychiatry 33, 227–235.PubMedCrossRefGoogle Scholar
  57. Nyberg S., Farde L., Eriksson L., Halldin C. and Eriksson B. (1993) 5-HT2 and D2 dopamine receptor occupancy in the living human brain. Psychopharmacology 110, 265–272.PubMedCrossRefGoogle Scholar
  58. Nybäck H., Nordberg A., Långström B., Halldin C., Hartvig P., Åhlin A., Swahn C.G. and Scdvall G. (1989) Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Prog. Brain. Res. 79, 313–319.PubMedCrossRefGoogle Scholar
  59. Nybäck H., Halldin C., Ahlin A., Curvall M. and Eriksson L. (1993) PET studies of the uptake of (S)-and (R)-[11C]nicotinc in human brain: No evidence of specific receptor binding. Psychopharmacology (submitted).Google Scholar
  60. Olanoff L., Walle T., Walle K., Cowart D. and Gaffeny T. (1984) Stereoselective clearance and distribution of intravenous propanolol. Clin. Pharmacol. Ther. 35, 755–761.PubMedCrossRefGoogle Scholar
  61. Oldendorf W.H. Stereospecificitv of blood-brain barrier permeability to amino acids. (1973) Am. J. Physiol. 224, 967–969.PubMedGoogle Scholar
  62. Ram S., Ehrenkaufer R.E., Spicer L.D. and Coleman R.E. (1987) Synthesis of [C-l 1]-labcled dopamine Dl antagonists, 3-N-[C-ll) methyl benzazepines using [C11]CO2. J. Nucl. Med. 28, 625 (abstract).Google Scholar
  63. Rinne U.K., Laihinen J.O., Rinne J.O., Någren K., Bergman J. and Ruotsalainen U. (1990a) Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinsons disease Movement disorders 5, 55–59.PubMedCrossRefGoogle Scholar
  64. Rinne J.O., Laihinen J.O., Någren K., Bergman J., Solin O., Haaparanta M., Ruotsalainen U. and Rinne U.K. (1990b) PET demonstrates diffcrcntbehaviouir of striatal dopamine D-1 and D-2 receptors in early Parkinsons disease. J. Neurosci. Res. 27, 494–499.PubMedCrossRefGoogle Scholar
  65. Rinne J.O., Hictala J., Ruotsalaincn U., Säkö E., Laihincn J.O., Någren K., Lehikoinen P., Oikoncn V. and Syvälahti E. (1993) Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopridc. J. Cereb. Blood Flow Metab. 13, 310–314.PubMedCrossRefGoogle Scholar
  66. Schober O., Duden C., Meyer G.J., Müller J.A. and Hundcshagen H. (1987) Non selective transport of (11C-methyl)-L- and D-mcthionine into malignant glioma. Eur. J. Nucl. Med. 13, 103.PubMedCrossRefGoogle Scholar
  67. Sedvall G., Ehrin E. and Fardc L. (1987) Stereoselective binding of Imaging of 11C-labelled piquindone (Ro 22–1319) to dopamine-D2 receptors in the living human brain. Human P sychopharmacology. 2, 23–30.CrossRefGoogle Scholar
  68. Sedvall G., Farde L., Kopp J., Nybäck H., Pauli S., Persson A., Savic I. and WQiesel F.-A. (1988) Visualization of neuroreceptor functions in the living human brain. In: The Wennergren International Conference on “Visualization of Brain Function”. Eds Hökfeldt T., Ottoson J.O., Widen L. MacMillan Press. 159–165.Google Scholar
  69. Sedvall G., Fardc L., Barnett A., Hall H. and Halldin C. (1991) 11C-SCH 39166, a selective ligand for visualization of dopamine-Dl receptor binding in the monkey brain using PET. P sychopharmacology. 103, 150–153.CrossRefGoogle Scholar
  70. Simonyi M., Fitos I. and Visy Y. (1980) Chirality of bioactive agents in protein binding, storage and transport processes. TIPS., 112–116.Google Scholar
  71. Snyder S.H., Pasternak G.W. and Pert C.B. (1975) Opiate receptor mechanism. In: Iversen S.D., Snyder S.H. (eds) Handbook pf pharmacology, vol 5, Plenum Press, New York, pp 329–360.Google Scholar
  72. Smith D.F. (1984) Stcrcopsychopharmacology: Past, present and future. Biol. Psychiatry 8, 327–350.Google Scholar
  73. Suhara T., Fukuda H., Inouc O., Itoh T., Suzuki K., Yamasaki T and Tateno Y. (1991) Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103, 41–45.PubMedCrossRefGoogle Scholar
  74. Suhara T., Nakayama K., Inouc O., Fukuda H., Shimizu M., Mori A. and Tateno Y. (1992) D1 dopamine receptor binding in mood disoreders measured by positron emission tomography. Psychopharmacology 106, 14–18.PubMedCrossRefGoogle Scholar
  75. Swahn C.G, Halldin C., Lundstrom J, Erixson E, Farde L. A rapid and efficient HPLC-method for determination of ligand metabolism during PET-studies — examplified with [11C]raclopridc (1993a). J. Labelled. Comp. Ratiopharm. 32, 284–285.Google Scholar
  76. Swahn C.G, Halldin C., Fardc L, Sedvall G. Metabolism of the PET ligand [11C]SCH 23390. Identification of two metabolites with HPLC (1993b). Human Psychopharmacol. (submitted)Google Scholar
  77. Tedroff J., Aquilonius S.-M., Hartvig P., Lundqvist H., Gee A., Ulin J. and Långström. (1988) Monoamine re-uptake site in the human brain evaluated in vivo by means of [11C]nomifensine and positron emission tomography: the effect of age and Parkinsons disease. Acta Neurol. Scand. 77, 192–201.PubMedCrossRefGoogle Scholar
  78. Thijssen H., Baars L. and Drittij-Rcijndcrs J. (1985) Stereoselective aspects in the pharmacokinetics and pharmacodynamics of accnocumaral and its amino and acetamidc derivatives in the rat. Drug Metab. Dispos. 13, 593–597.PubMedGoogle Scholar
  79. Ulin J., Gee A.D., Malmborg P., Tedroff J. and Långström B. (1989) Synthesis of racemic (+) and (-) N-[methyl-11C]nomifensine, a ligand for evaluation of monoamine re-uptake sites by use of positron emission tomography. Appl. Radiat. I sol. 40, 171–176.CrossRefGoogle Scholar
  80. Volkow N.D., Fowler S.S., Wang G.-J., Dewey S., Schlycr D., MacGregor R., Logan J., Alexoff D., Shea C., Hitzemann R., Angrist B. and Wolf A.P. (1993) Reproducibility of repealed measures of carbon-11-raclopride binding in the human brain. J. Nucl. Med. 34, 609–613.PubMedGoogle Scholar
  81. Wiesel F.-A., Blomqvist G., Halldin C., Sjögren I., Bjerkenstedt L., Venizclos N. and Hagenfeldt L. (1991) The transport of tyrosine into the human brain as determined with L-[11C]tyrosine and PET. J. Nucl. Med. 32, 2043–2049.PubMedGoogle Scholar
  82. Ögren S-O. and Hogberg T. (1988) Novel dopamine D-2 antagonists for the treatment of schizophrenia. ISI Atlas of Science; Pharmacology, 141.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Christer Halldin
    • 1
  • Tetsuya Suhara
    • 1
  • Lars Farde
    • 1
  • Göran Sedvall
    • 1
  1. 1.Department of Psychiatry and Psychology, Karolinska InstituteKarolinska HospitalStockholmSweden

Personalised recommendations