Fluorine-18 Labeling of Radiopharmaceuticals for PET Studies: Main Aspects and Problems Encountered in Chemical Syntheses

  • Christian Lemaire


Positron emission tomography has considerably developed during the past ten years and has proved to be the only original quantitative method appropriate to the study of the in vivo working of the brain, a field quite difficult to approach by other imaging techniques. Beside the considerable technical advances in positron tomographs, the recent progress in the radiochemistry of short-lived radionuclides have, to a large extent, contributed to the development of this functional imaging technique. Now being used in many research centers, PET studies with a labeled molecule known as radiopharmaceutical, carefully selected in respect of its biochemical properties and its in vivo biological behaviour, allow the quantitative determination of numerous physiological parameters (Phelps et al., 1986).


Radiochemical Yield Asymmetric Synthesis HPLC Purification Routine Production High Yield Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, M.J., Ruth, T.J., Grierson, J.R., Abeysekera, B., Pate, B.D., 1986, Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite. J. Nucl Med, 27, 1462.PubMedGoogle Scholar
  2. Adam, M.J., Jivan S., 1988, Synthesis and purification of L-6-[18F]fluorodopa, Appl Radiat hot. 39: 1203.CrossRefGoogle Scholar
  3. Cantineau, R., Damhaut, P., Plenevaux, A.. Lemaire, C., Guillaume, M., 1991, Synthesis and preliminary animal studies of [123I]iodotropapride: a cerebral dopamine D2 receptor ligand, J. Labelled Compd. Radiopharm. 30: 360.Google Scholar
  4. Chaly, T., Diksic, M., 1986, High yield synthesis of 6-[18F]fluoro-L-dopa by regioselective fluorination of protected L-dopa with [18F]acetylhypofluorite. J. Nucl. Med. 27:1896.PubMedGoogle Scholar
  5. Chakraborty, P.K., Kilbourn, M.R., 1991, Oxidation of substituted 4-fluorobenzaldehydes: application to the no-carrier-added syntheses of 4-[18F]fluoroguaiacol and 4-[18F]fluorocatechol, Appl. Radiat. Isot. 42: 673.CrossRefGoogle Scholar
  6. Chirakal, R., Firnau, G., Couse, J., Garnett E.S., 1984, Radiofluorination with 18F-labelled acetyl hypofluorite: [18F]L-6-fluorodopa. Int. J. Appl. Rod. hot. 35: 651.CrossRefGoogle Scholar
  7. Chirakal, R., Firnau, G., Garnett, E.S., 1986, High yield synthesis of 6-[18F]fluoro-L-dopa. J. Nucl. Med. 27: 417.PubMedGoogle Scholar
  8. Coenen, H.H., Klatte, B., Knöchel, A., Schüller, M., Stöcklin, G., 1986, Preparation of N.C.A. [17-18F]-fluoroheptadecanoic acid in high yields via aminopolyether supported, nucleophilic fluorination. J. Labelled Compd Radiopharm. 23, 455.CrossRefGoogle Scholar
  9. Coenen, H.H., Franken, K., Kling, P., Stöcklin G., 1988, Direct electrophilic radiofluorination of phenylalanine, tyrosine and dopa, Appl. Radiat. Isot. 39:1243.CrossRefGoogle Scholar
  10. Coenen, H.H., Kling, P., Stöcklin, G., 1989, Cerebral metabolism of L-2-[18F]fluorotyrosine, a new PET tracer of protein synthesis, J. Nucl. Med. 30:1367.PubMedGoogle Scholar
  11. Coenen, H.H., 1993, Biochemistry and evaluation of fluoroamino acids, in “PET studies on amino acid metabolism and protein synthesis,” B.M. Mazoyer, W.D. Heiss, D. Comar, ed., Kluwer Academic Publishers, Dordrecht.Google Scholar
  12. Crouzel, C., Guillaume, M., Barré, L., Lemaire, C., Pike, V.W., 1992, Ligands and tracers for PET studies of the 5-HT system-Current status, Nucl. Med. Biol. 19:857Google Scholar
  13. Crouzel, C., Clark, C., Brihaye, C., Långström, B., Lemaire, C., Meyer, G.J., Nebelling, B. and Stone Elander, S., 1993, Radiochemistry automation for PET, in: “Radiopharmaceuticals for Positron Emission Tomography- Methodological aspects,” G. Stöcklin and V.W. Pike, ed„ Kluwer academic publishers, Dordrecht (in press).Google Scholar
  14. Diksic, M., Farrokhzad, S., 1985, New synthesis of fluorine-18-labelled 6-fluoro-L dopa by cleaving the carbon-silicon bond with fluorine. J. Nucl. Med. 26:1314.PubMedGoogle Scholar
  15. Damhaut, P., Cantineau, R., Lemaire, C., Plenevaux, A., Christiaens, L, Guillaume, M., 1992, 2- and 4-[18F]fluorotropapride, two specific D2 receptor ligands for positron emission tomography: n.c.a; syntheses and animal studies, Appl. Radiat. Isot. 43:1265.CrossRefGoogle Scholar
  16. Ding, Y.-S., Shiue, C.-Y., Fowler, J. S., Wolf, A. P., Plenevaux A, 1990, No-carrier-added (N.C.A.) aryl [18F]fluorides via the nucleophilic aromatic substitution of electron-rich aromatic rings. J. Fluorine Chem. 48:189.CrossRefGoogle Scholar
  17. Ding, Y.-S., Fowler, J.S., Gatley, S.J., Dewey, S. L., Wolf A. P., 1991, Synthesis of high specific activity (+)- and (-)-6-[18F]fluoronorepinephrine via the nucleophilic aromatic substitution reaction. J. Med. Chem. 34: 767.PubMedCrossRefGoogle Scholar
  18. Fasth, K.J., Malmborg, P., Långström, B., 1991, Two syntetic routes for the asymmetric synthesis of [b-11C]amino acids with high enantiomeric purities. J. Labelled Compds Radiopharm. 30: 401.Google Scholar
  19. Firnau, G., Chirakal, R., Sood, S., Garnett, E.S., 1980, Aromatic fluorination with xenon difluoride: L-3,4-dihydroxy-6-fluoro-phenylalanine. Can. J. Chem. 58:1449.CrossRefGoogle Scholar
  20. Firnau, G., Chirakal, R., Garnett E.S., 1984, Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa./Afac/Med. 25:1228.Google Scholar
  21. Firnau, G., Garnett, E.S., Chirakal, R., Sood, S., Nahmias, C., Schrobilgen G., 1986, [18F]fluoro-L-dopa for the in vivo study of intracerebral dopamine, Appl. Rad. Isot. 37: 669.CrossRefGoogle Scholar
  22. Garnett, E.S., Firnau, G., Nahmias C., 1983, Dopamine visualized in the basal ganglia of living man, Nature. 305:137.PubMedCrossRefGoogle Scholar
  23. Guillaume, M., Luxen, A., Nebeling, B., Argentini, M., Clark, J. C., Pike V. W., 1991, Recommendations for fluorine-18 production. (EEC Task Group Report), Appl. Radiat, Isot. 42:749.CrossRefGoogle Scholar
  24. Ishiwata, K., Ishii, S.-I., Senda, M., Tsuchiya, Y., Tomimoto, K., 1993, Electrophilic synthesis of 6-[18F]fluoro-L-dopa: use of 4-O-pivaloyl-L-dopa as a suitable precursor for routine production, Appl. Radiat. Isot. 44:755.CrossRefGoogle Scholar
  25. Keinan, E., Perez, D., Sahai, M., Shvily, R., 1990, Diiodosilane. 2. A multipurpose reagent for hydrolysis and reductive iodination of ketals, acetals, ketones, and aldehydes. J. Org. Chem. 55: 2927.CrossRefGoogle Scholar
  26. Kilbourn, M. R., 1990, “Fluorine-18 labeling of radiopharmaceuticals”. National Academy Press, Washington.Google Scholar
  27. Lemaire, C., Guillaume, M., Christiaens L., 1989, Asymmetric synthesis of 6-[18F]fluoro-L-dopa via N.C.A. nucleophilic radiofluorination. J. Nucl. Med. 30:752.Google Scholar
  28. Lemaire, C., Guillaume, M., Cantineau, R., Plenevaux, A., Christiaens L., 1990, No-carrier-added regioselective preparation of 6-[18F]-fluoro-L-dopa, J. Nucl Med. 31:1247.PubMedGoogle Scholar
  29. Lemaire, C., Guillaume, M., Cantineau, R., Plenevaux, A., Christiaens L., 1991a, An approach to the asymmetric synthesis of L-6-[18F]fluorodopa via nca nucleophilic fluorination. Appl. Radiat. Isot. 42: 629.CrossRefGoogle Scholar
  30. Lemaire, C., Damhaut, P., Plenevaux, A., Cantineau, R., Christiaens, I., and Guillaume, M., 1991b, Asymmetric synthesis of 4-[18F]fluoro-L-m-tyrosine via aromatic fluorination. J. Nucl. Med. 32: 935.Google Scholar
  31. Lemaire, C., Cantineau, R., Guillaume, M., Plenevaux, A., Christiaens, L., 1991c, Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabelling and in vivo biological behavior in rats, J. Nucl. Med. 32: 2266.PubMedGoogle Scholar
  32. Lemaire, C., Damhaut, P., Cantineau, R., Plenevaux, A., Guillaume, M., 1991d, N.C.A. synthesis of an N-ω-[18F]-fluoroethyl analog of altanserine, a serotonin S2 receptor ligand, J. Labelled Compd. Radiopharm. 30:374.Google Scholar
  33. Lemaire, C., Damhaut, P., Plenevaux, A., Cantineau, R., Christiaens, L., Guillaume, M., 1992a, Synthesis of fluorine-18 substituted aromatic aldehydes and benzyl bromides, new intermediates for n.c.a. [18F]fluorination, Appl. Radiat. Isot. 43:485.CrossRefGoogle Scholar
  34. Lemaire, C., Plenevaux, A., Comar, D., 1992b, Feasibility of multimillicurie preparation of L-6-[18F]fluorodopa by nucleophilic asymmetric synthesis, Eur. J. Nucl. Med. 19:591Google Scholar
  35. Lemaire, C., 1993a, Production of L-[18F]fluoroamino acids for protein synthesis: overview and recent developments in nucleophilic syntheses, in “PET studies on amino acid metabolism and protein synthesis,” B.M. Mazoyer, W.D. Heiss, D. Comar, ed., Kluwer Academic Publishers, Dordrecht.Google Scholar
  36. Lemaire, C., Plenevaux, A., Cantineau, R., Christiaens, L., Guillaume, M., Comar, D., 1993b, Nucleophilic enantioselective synthesis of 6-[18F]fluoro-L-dopa via two chiral auxiliaries, Appl. radiat. Isot. 44:131.CrossRefGoogle Scholar
  37. Lemaire, C., Plenevaux A., Damhaut, P., Guillaume, M., Christiaens, L., Comar, D., 1993c, NCA asymmetric synthesis of 2-[18F]fluoro-L-tyrosine, J. Labelled Compd. Radiopharm. 32:139.Google Scholar
  38. Luxen, A., Perlmutter, M., Bida, G.T., Van Moffaerts, G., Cook, J.S., Satyamurthy, N., Phelps, M.E., Barrio J.R., 1990, Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. Appl. Radiat. Isot. 41:275.CrossRefGoogle Scholar
  39. Luxen, A., Guillaume, M., Melega, W.P., Pike V.W., Solin O., Wagner R., 1992, Production of 6-[18F]fluoro-L-dopa and its metabolism In vivo — a critical review, Appl. Radiat. Isot. 19: 149.Google Scholar
  40. Mazière, B., Coenen, H.H., Haldin, C., Nagren, K., Pike, V.W., 1992, PET radioligands for dopamine receptors and re-uptakes sites: chemistry and biochemistry, Nucl. Med. Biol. 19: 497.Google Scholar
  41. Mcintosh, J.M., Mishra P., 1986, Alkylation of camphor imines of glycinates. Diastereoselectivity as a function of electronic factors in the alkylating agent. Can. J. Chem. 64: 726.CrossRefGoogle Scholar
  42. Murakami, M., Takahashi, K., Kondo, Y., Mizusawa, S., Nakamichi, H., Sasaki, H., Hagami, E., Iida, H., Kanno I., Miura, S., Uemura K., 1988, 2-18F-phenylalanine and 3-18F-tyrosine. Synthesis and preliminary data of tracer kinetics, J. Labelled Compd. Radiopharm. 25: 773.CrossRefGoogle Scholar
  43. Namavari, M., Bishop, A., Satyamurthy, N., Bida, G., Barrio, J.R., 1992, Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]fluoro-L-dopa, Appl. Radiat. Isot. 43:989.CrossRefGoogle Scholar
  44. Oguri, T., Kawai, N., Shioiri, T., Yamada S., 1978, Amino acids and peptides. XXDC. A new efficient asymmetric synthesis of α-amino acid derivatives with recycle of a chiral reagent- Asymmetric alkylation of a chiral Schiff base from glycine, Chem Pharm Bull 26:803.CrossRefGoogle Scholar
  45. Phelps, M.E., Mazziotta, J.C., Scheiben, H.R., “Positron emission tomography and autoradiography, principles and applications for the brain and the heart,” Raven Press, New York (1986).Google Scholar
  46. Plenevaux, A., Al-Darwich, M.J., Lemaire, C., Delfiore, G., Christiaens, L., Comar, D., 1993, Asymmetric synthesis of n.c.a. L-[2-11C]-4-chlorophenylalanine, J. Labelled Compd. Radiopharm. 32:156.Google Scholar
  47. Reddy, G.N., Haeberli, M., Beer, H.-F., Schubiger, A.P., 1993, An improved synthesis of no-carrier-added (n.c.a.) 6-[18F]fluoro-L-dopa and its remote routine production for PET investigations of dopaminergic systems, Appl. Radiat. isot. 44:645.CrossRefGoogle Scholar
  48. Sadzot, B., Lemaire, C., Maquet, M., Plenevaux, A., Salmon, E., Degueldre, C., Hermanne, J.P., Guillaume, M., Cantineau, R., Franck, G., Comar, D., 1993, Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin. Results in young normal controls. J. Cereb. Blood Flow Metab. (in press).Google Scholar
  49. Seebach, D., Dziadulewicz, E., Behrendt, L., Cantoreggi, S., Fitzi, R., 1989, Synthesis of nonproteinogenic (R)- or (S)-amino acids analogues of phenylalanine, isotopically labelled and cyclic amino acids from tert-butyl-2-(tert-butyl)-3-methyl-4-oxo-l-imidazolidinecarboxylate, Liebigs Ann. Chem. 12:1215.CrossRefGoogle Scholar
  50. Wagner, H.H., Burns, H.D., Dannals, R.F., Wong, D.F., Langstrom, B., Duelfer, T., Frost, J.J., Ravert, H.T., Links, J.M., Rosenbloom, S.B., Lucas, S.E., Kramer, A.V., Kuhar, M.J., 1983, Imaging dopamine receptors in the human brain by positron emission tomography, Science. 221:1264.PubMedCrossRefGoogle Scholar
  51. Williams, M. W., 1989, “Synthesis of optically active α-amino acids,” Pergamon Press, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Christian Lemaire
    • 1
  1. 1.B-30, Cyclotron Research CenterLiège UniversityLiègeBelgium

Personalised recommendations