Requirements for Production Targets for Middle-Energy Cyclotrons

  • J. R. Dahl


The fundamental requirements of production target systems are much the same for all accelerators: They must provide with boring regularity, predictably sufficient amounts of radionuclide of consistently satisfactory quality and quantity. The details of the methods by which these goals are achieved varies with the beam energy and current capabilities of the cyclotron, the types of particles accelerated, and other factors.


Remote Control Target Material Target System Programmable Logic Control Target Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.P. Wolf, and W.B. Jones; Cyclotrons for Biomedical Radioisotope Production, Radiochem. Acta, 34:, 1–7, 1983Google Scholar
  2. 2.
    R. Finn, B. Dahl; Facility Layout and Planning, Chap 5. in Proceedings. of the second Workshop on Targetry and Target Chemistry, Heidelberg, West Germany, September 22–25, 1987Google Scholar
  3. 3.
    P.W. Wojciechowski, M. Sajjad, R.M. Lambrecht; A Semi-Quantitative Approach to the Design, Analysis and Operation of a Gas Target System; Appl. Radiat. Isot., Part A, Int. J. Appl. Instrum., 39, (5), 429–436, 1988CrossRefGoogle Scholar
  4. 4.
    B.W. Weiland; A Negative Ion Cyclotron Using 11 MeV Protons for Production of Radionuclides for Clinical Positron Tomography, 119–125, Proceeding of the First International Workshop on Targetry and Target Chemistry, Heidelberg West Germany, 4 to 7 Oct. 1985Google Scholar
  5. 5.
    Y. Jongen; Cyclone 30, a H’, K-30, 500uA Cyclotron, 164–165, Proceedings, of the second Workshop on Targetry and Target Chemistry, Heidelberg, West Germany, September 22–25, 1987Google Scholar
  6. 6.
    M.R. Kilbourn, J.T. Hood, M.J. Welch; A Simple 180 Water Target for 18F Production, Int. J. Appl. Rad. Isot., 35, (7), 599–602, 1984CrossRefGoogle Scholar
  7. 7.
    R. Iwata, T. Ido, F. Brady, T. Takahashi, A. Ujiie; [18F]Fluoride Production with a Circulating [18O] Water Target; Appl. Radiat. Isot., Part A, Int. J. Radiat. Instrum., 38, (11), 979–984, 1987CrossRefGoogle Scholar
  8. 8.
    R.J. Nickles, R.D. Hichwa, M.E. Daube, G.D. Hutchins, D.D. Congdon; An 18O2-Target for the High Yield Production of 18F-Fluoride, int. J. Appl. Radiat. Isot.; 34, (3), 625–629, 1983CrossRefGoogle Scholar
  9. 9.
    J. Gorres, K.U. Kettner, H. Krawinkel, C. Rolfs; The Influence of Intense Ion Beams on Gas Target Densities; Nucl. Inst, and Meth., 177, 295–303, 1980CrossRefGoogle Scholar
  10. 10.
    S.-J. Heselius, P. Lindblom, O. Solin; Optical Studies of the Influence of an Intense Ion Beam on High Pressure Gas Target; Int. J. Appl. Radiat. Isot., 33, 653–659, 1982CrossRefGoogle Scholar
  11. 11.
    S.-J. Heselius, P. Malmborg, O. Solin, B. Langstrom; Studies of Proton Beam Penetration in Nitrogen-gas Targets with Respect to Production and Specific Radioactivity of Carbon-11; Appl. Radiat. Isot. Part A, 38, (1), 49–57, 1987CrossRefGoogle Scholar
  12. 12.
    M. Oselka, J.E. Gindler; Non-linear Behavior of Gas Targets for Isotope Production; Int. J. Appl. Rad. & Isot., 28, 804–805, 1977CrossRefGoogle Scholar
  13. 13.
    N. Jarmie, L.J. Morrison, J. C. Martin; Thin Metal Windows for Gas Targets, Nuclear Inst. & Meth., 116, 451–452, 1974CrossRefGoogle Scholar
  14. 14.
    H.H. Stevens, Behavior of Circular Membranes Stretched above the Elastic Limit by Air Pressure; Soc. for Experimental Stress Anal. Proc, 2, (1), 139–146, 1944Google Scholar
  15. 15.
    G.T. Bida, R.L. Ehrenkaufer, A.P. Wolf, J.S. Fowler, R.R. MacGregor, T.J. Ruth; The Effect of Target-gas Purity on the Chemical Form of F-18 during 18F-F2 Production Using the Neon/Fluorine Target; J. Nucl. Med., 21, (8), 758–762, 1980PubMedGoogle Scholar
  16. 16.
    V. Casella, T. Ido, A.P. Wolf, J.S. Fowler, R.R. MacGregor, T.J. Ruth; Anhydrous F-18 Labeled Elemental Fluorine for Radiopharmaceutical Preparation; J. Nucl. Med., 21, (8), 750–757, 1980PubMedGoogle Scholar
  17. 17.
    M. Diksic, Y. Toda; Production of F18-labeled Molecular Fluorine with a Medical mini-Cyclotron; Can. J. Chem., 61, (4), 661–664, 1983CrossRefGoogle Scholar
  18. 18.
    J. Keinonen, A. Fontell, A.-L. Kairento; Effective Small-Volume [18O]Water Target for the Production of [18F]fluoride; Appl. Radiat. Isot., Part A, Int. J. Radiat. Appl. Instrum., 37, (7), 631–632, 1986CrossRefGoogle Scholar
  19. 19.
    B.W. Wieland, D.J. Schlyer, A.P. Wolf; Charged Particle Penetration in Gas Targets Designed for Accelerator Production of Radionuclides Used in Nuclear Medicine; Int. J. Appl. Radiat. Isot., 35, 5, 387–396, 1984CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. R. Dahl
    • 1
  1. 1.Departments of Research and MedicineNorth Shore University Hospital/Cornell University Medical CollegeManhassetUSA

Personalised recommendations