Skip to main content

The Choline-Devoid Diet Model of Hepatocarcinogenesis in the Rat

  • Chapter
Chemical Carcinogenesis

Abstract

The notion that a choline-devoid (CD) diet is hepatocarcinogenic in the rat has already gone through two historical phases, and is at the beginning of its third (for a detailed account, see ref. 1). In 1946, Copeland and Salmon published the first of a series of papers showing the development of hepatocellular carcinomas (HCCs) in rats chronically fed a CD diet2,3. The finding attracted much attention at the time, since the modalities of the experiments involved no addition to the diet of, or treatment of the animals with, chemical carcinogens. However, subsequent studies by Newberne et al.4,5 cast doubts on whether the diet, and the diet alone, was responsible for the genesis of the tumors, and attributed the latter, instead, to a likely contamination of the diet with aflatoxin B1, a newly discovered6 and most potent hepatocarcinogen in the rat7. In the last few years, the question was reopened by a repetition of the original findings of Copeland and Salmon in three different laboratories8–11. In these instances, both diets and rat’s environment were scrutinized for relevant contamination with chemical carcinogens, with negative results. At the present time, therefore, the conclusion seems unavoidable that CD diets are indeed hepatocarcinogenic, and that the genesis of the tumors resides in effects of these diets on rat liver. However, at least one primary issue awaits resolution, before the CD-diet model of hepatocarcinogenesis can be fully categorized; that is whether the diets act as complete carcinogens, able to initiate de novo liver cells, as well as to promote their evolution to cancer; or whether they merely promote the evolution to cancer of endogenous initiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Newberne, Lipotropic Factors and Oncogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).

    Google Scholar 

  2. D. H. Copeland and W. D. Salmon, The occurrence of neoplasms in the liver, lungs and other tissues of rats as a result of prolonged choline deficiency, Am J. Pathol. 22:1059 (1946).

    CAS  Google Scholar 

  3. W. D. Salmon and D. H. Copeland, Liver carcinoma and related lesions in chronic choline deficiency, Am. N. Y. Acad. Sci. 57:664 (1954).

    Article  CAS  Google Scholar 

  4. VJ. D. Salmon and P. M. Newberne, Occurrence of hepatomas in rats fed diets containing peanut meal as a major source of protein, Cancer Res. 23:571 (1963).

    CAS  Google Scholar 

  5. P. M. Newberne, Biological activity of the aflatoxins in the domestic and laboratory animals, U. S. Fish Wildlife Serv. Res. Rep. 70:131 (1967).

    Google Scholar 

  6. K. Sargeant, R. B. A. Carnaghan and R. Allcroft, Toxic products in groundnuts: chemistry and origin, Chem. Ind. 53:55 (1963).

    Google Scholar 

  7. G. N. Wogan, A. S. Paglialunga and P. M. Newberne, Carcinogenic effects of low dietary levels of aflatoxin B in rats, Food Cosmet. Toxicol. 12:681 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. Y. B. Mikol, K. L. Hoover, D. Creasia and L. A. Poirier, Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets, Carcinogenesis 4:1619 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. A. K. Ghoshal and E. Farber, The induction of liver cancer by a dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. S. Yokoyama, M. A. Sells, T. V. Reddy and B. Lombardi, Hepatocarcinogenic and promoting action of a choline-devoid diet in the rat, Cancer Res. 45:2834 (1985).

    PubMed  CAS  Google Scholar 

  11. R. C. Gupta, J. Locker and B. Lombardi, 32P-Postlabeling analysis of liver DNA-adducts in rats chronically fed a choline-devoid diet, Carcinogenesis 8:187 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. H. Shinozuka and S. L. Katyal, Pathology of choline deficiency, in: “Nutritional Pathology”, H. Sidransky, ed., Marcel Dekker, New York (1985).

    Google Scholar 

  13. H. Shinozuka, S. L. Katyal and M. I. R. Perera, Choline deficiency and chemical carcinogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).

    Google Scholar 

  14. C. C. Lucas and J. J. Ridout, Fatty livers and lipotropic phenomena, Progr. Chem. Fats Other Lipids 10:1 (1967).

    Article  Google Scholar 

  15. A. Srecker, Beobachtungen uber die Galle ver shiedener Thiere, Ann. Chim. 70:149 (1849).

    Google Scholar 

  16. C. H. Best and M. E. Huntsman, The effects of the components of lecithins upon deposition of fat in the liver, J. Physiol. 75:405 (1932).

    PubMed  CAS  Google Scholar 

  17. C. H. Best and J. H. Ridout, Choline as a dietary factor, Ann. Rev. Biochem. 8:349 (1939).

    Article  CAS  Google Scholar 

  18. C. H. Best, M. E. Huntsman and J. H. Ridout, The “lipotropic” effect of proteins, Nature 135:821 (1935).

    Article  CAS  Google Scholar 

  19. S. H. Zeisel, Dietary choline: biochemistry, physiology, and pharmacology, Annu. Rev. Nutr. 1:95 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. J. A. Bremer and D. M. Greenberg, Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidyl choline), Bioch. Biophys. Acta 46:205 (1961).

    Article  CAS  Google Scholar 

  21. A. Contardi and A. Ercoli, Uber die enzymatische Spaltung der Lecithine und Lysolecithine, Biochem. Z. 261:275 (1933).

    CAS  Google Scholar 

  22. L. A. Poirier, The role of methionine in Carcinogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).

    Google Scholar 

  23. R. J. Young, C. C. Lucas, J. M. Patterson and C. H. Best, Lipotropic dose-response studies in rats: comparison of choline, betain, and methionine, Canad. J. Biochem. Physiol. 34:713 (1956).

    Article  PubMed  CAS  Google Scholar 

  24. Nutrient requirements of laboratory animals, Natl. Res. Council 10:7 (1978).

    Google Scholar 

  25. H. Shinozuka, S. L. Katyal and M. I. R. Perera, Fat, lipotropes, hypolipidemic agents and liver cancer, in: “Dietary Fat and Cancer”, C. Ip., D. F. Birt, A. E. Rogers and C. Mettline, eds., Alan R. Liss Inc., New York (1986).

    Google Scholar 

  26. W. H. Griffith and N. J. Wade, Choline metabolism. 1. The occurrence and prevention of hemorrhagic degeneration in young rats on a low choline diet, J. Biol. Chem. 131:567 (1939).

    CAS  Google Scholar 

  27. R. E. Olson, Scientific contributions of Wendel H. Griffith to our understanding of the function of choline, Fed. Proc. 30:131 (1971).

    PubMed  CAS  Google Scholar 

  28. B. Lombardi, Effects of choline deficiency on rat hepatocytes, Fed. Proc. 30:139 (1971).

    PubMed  CAS  Google Scholar 

  29. A. Kuksis and S. Mookerjea, Choline, Nutr. Rev. 36:201 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. E. P. Kennedy and S. B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipids, J. Biol. Chem. 222:193 (1956).

    PubMed  CAS  Google Scholar 

  31. C. Bruni and D. M. Hegsted, Effects of choline-deficient diets on the rat hepatocyte. Electron microscopic observations, Am. J. Path. 61:413 (1970).

    PubMed  CAS  Google Scholar 

  32. B. Lombardi and A. Oler, Choline deficiency fatty liver. Protein synthesis and release, Lab. Invest. 17:308 (1967).

    PubMed  CAS  Google Scholar 

  33. A. Oler and B. Lombardi, Further studies on a defect in the intracellular transport and secretion of proteins by the liver of cholinedeficient rats, J. Biol. Chem. 245:1282 (1970).

    PubMed  CAS  Google Scholar 

  34. W. E. M. Lands, Lipid metabolism, Ann. Rev. Biochem. 34:313 (1965).

    Article  PubMed  CAS  Google Scholar 

  35. R. L. Lyman, S. M. Hopkins, G. Sheehan and J. Tinoco, Effects of estradiol and testosterone on the incorporation and distribution of [Me-C] methionine methyl in rat liver lecithins, Bioch. Biophys. Acta 152:197 (1968).

    Article  CAS  Google Scholar 

  36. B. Lombardi, P. Pani, F. F. Schlunk and S-H. Chen, Labeling of liver and plasma lecithins after injection of 1-2-14 C-2-Dimethyl-aminoethanol and 14C-L-Methionine-Methyl to choline deficient rats, Lipids 4:67 (1969).

    Article  PubMed  CAS  Google Scholar 

  37. B. Lombardi, Considerations on the pathogenesis of fatty liver, Lab. Inv. 15:1 (1966).

    CAS  Google Scholar 

  38. K. J. Isselbacher and D. H. Alpers, Fatty liver, biochemical and clinical aspects, in: “Disease of Liver”, L. Schiff, ed., Lippincott, Philadelphia (1969).

    Google Scholar 

  39. R. O. Recknagel and E. A. Glende, Carbon tetrachloride hepatoxicity: An example of lethal cleavage, CRC Crit. Rev. Toxicol. 2:263 (1973).

    Article  Google Scholar 

  40. W. S. Hartroft, Histological studies on fatty infiltration of the liver in choline-deficient rats, in: “Liver Disease”, S. Scherlock and G. E. W. Wolstenholme, eds., J. & A. Churchill, London (1951).

    Google Scholar 

  41. N. Chandar, J. Amenta, J. C. Kandala and B. Lombardi, Liver cell turnover in rats fed a choline-devoid diet, Carcinogenesis, 8:669 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. N. Chandar and B. Lombardi, Liver cell proliferation, and incidence of hepatocellular carcinomas, in rats fed consecutively a cholinedevoid and choline-supplemented diet, submitted for publication.

    Google Scholar 

  43. J. L. Farber, Reactions of the liver to injury: Necrosis, in: “Toxic Injury of the Liver, PartA”, E. Farber and M. M. Fisher, eds., Marcel Dekker, New York (1979).

    Google Scholar 

  44. B. F. Trump, E. M. McDowell and Arstila, A. V., in: “Principles of Pathobiology”, R. B. Hill and M. F. LaVia, eds., Oxford University Press (1980).

    Google Scholar 

  45. W. S. Hartroft, The sequence of pathological events in the development of experimental fatty livers and cirrhosis, Ann. N. Y. Acad. Sci. 57:633 (1954).

    Article  PubMed  CAS  Google Scholar 

  46. R. A. MacDonald, “Lifespan” of liver cells. Autoradiographic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats, Arch. Intern. Med. 107:79 (1961).

    Google Scholar 

  47. L. K. Giambarresi, S. L. Katyal and B. Lombardi, Promotion of liver carcinogenesis in the rat by a choline-devoid diet: role of liver cell necrosis and regeneration, Br. J. Cancer 46:825 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. A. K. Ghoshal, M. Ahluwalia and E. Farber, The rapid induction of liver cell death in rats fed a choline-deficient methionine-low diet, Am J. Pathol. 113:309 (1983).

    PubMed  CAS  Google Scholar 

  49. K. N. Rao, Regulatory aspects of cholesterol metabolism in cells with different degrees of replication, Toxicol. Path. 14:430 (1986).

    Article  CAS  Google Scholar 

  50. A. E. Rogers and R. A. MacDonald, Hepatic vasculature and cell proliferation in experimental cirrhosis, Lab. Invest. 14:1710 (1965).

    PubMed  CAS  Google Scholar 

  51. H. P. Glauert, D. Beer, M. S. Rao, M. Schwartz, Y-D. Xu, T. L. Goldsworthy, J. Coloma and H. Pitot, Induction of altered hepatic foci in rats by the administration of hypolipidemic peroxisome proliferators above or following a single dose of diethylnitrosamine, Cancer Res. 46:4601 (1986).

    PubMed  CAS  Google Scholar 

  52. A. K. Ghoshal and M. Farber, Induction of liver cancer by a diet deficient in choline and methionine (CMD), Proc. Am. Assoc. Cancer Res. 24:98 (1983).

    Google Scholar 

  53. J. W. Grisham and E. A. Porta, Origin and fate of proliferated hepatic ductal cells in the rat: Electron microscopic and autoradiographic studies, Exp. Mol. Path. 3:242 (1964).

    Article  Google Scholar 

  54. H. Shinozuka, B. Lombardi, S. Sell and R. M. Laminarino, Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet, Cancer Res. 38:1092 (1978).

    PubMed  CAS  Google Scholar 

  55. Y. Inaoka, Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis, Gann 58:355 (1967).

    PubMed  CAS  Google Scholar 

  56. J. M. Grisham, Cell types in long-term propagable cultures of rat liver, Ann. N. Y. Acad. Sci. 349:128 (1980).

    Article  PubMed  CAS  Google Scholar 

  57. H. Yoshimura, R. Harris, S. Yokoyama, S. Takahashi, M. A. Sells, S. F. Pan and B. Lombardi, Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells Am. J. Path. 110:322 (1983).

    PubMed  CAS  Google Scholar 

  58. N. T. Hayner, L. Braun, P. Yaswen, M. Brooks and N. Fausto, Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers, Cancer Res. 44:332 (1984).

    PubMed  CAS  Google Scholar 

  59. M-S. Tsao, J. D. Smith, K. G. Nelson and J. W. Grisham, A diploid epithelial cell line from normal adult rat liver with phenotypic properties of oval cells, Exp. Cell Res. 154:38 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. L. Braun, M. Goyette, P. Yaswen, N. L. Thompson and N. Fausto, Growth in culture and tumorigenicity after transfection with ras oncogene of liver epithelial cells from carcinogen-treated rats, Cancer Res. 47:4116 (1987).

    PubMed  CAS  Google Scholar 

  61. M-S. Tsao and J. W. Grisham, Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells. A light and electron-microscopic analysis, Am. J. Path. 127:168 (1987).

    PubMed  CAS  Google Scholar 

  62. J. W. Grisham, S. B. Thal and A. Nagel, Cellular derivation of continuously cultured epithelial cells from normal rat liver, in: “Gem Expression and Carcinogenesis in Cultured Liver Cells”, L. E. Gershcenson and E. Brad Thompson, eds., Academic Press, New York (1975).

    Google Scholar 

  63. B. Lombardi, On the nature, properties, and significance of oval cells, in: “Recent Trends in Chemical Carcinogenesis”, P. Pani, F. Feo and A. Columbano, eds., ESA, Cagliari (1982).

    Google Scholar 

  64. J. C. Linnell, M. J. Wilson, Y. B. Mikol and L. A. Poirier, Tissue distribution of methylcobalamin in rats fed amino acid-defined methyl-deficient diets, J. Nutrit. 113:124 (1983).

    PubMed  CAS  Google Scholar 

  65. K. L. Hoover, P. H. Lynch and L. A. Poirier, Profound post-initiation enhancement by short-term severe methionine, choline, vitamin B12, and folate deficiency of hepatocarcinogenesis in F344 rats given a single low-dose diethylnitrosamine injection, JNCI 73:1327 (1984).

    PubMed  CAS  Google Scholar 

  66. D. G. Goodman, J. M. Ward, R. A. Squire, K. C. Chu and M. S. Linhart, Neoplastic and nonneoplastic lesions in aging F344 rats, Toxicol. Appl. Pharmacol. 48:237 (1979).

    Article  PubMed  CAS  Google Scholar 

  67. M. Pollard and P. H. Luckert, Spontaneous liver tumors in aged germ free Wistar rats, Lab. Anim. Sci. 29:74 (1979).

    PubMed  CAS  Google Scholar 

  68. D. G. Goodman, J. M. Ward and R. A. Squire, Neoplastic and nonneoplastic lesions in aging Osborne Mendel rats, Toxicol. Appl. Pharmacol. 55:433 (1980).

    Article  PubMed  CAS  Google Scholar 

  69. J. M. Ward, Morphology of foci of altered hepatocytes and naturally occurring hepatocellular tumors in F344 rats, Virchows Arch. Pathol. Anat. 390:339 (1981).

    PubMed  CAS  Google Scholar 

  70. K. Ogawa, T. Onoe and M. Tachenchi, Spontaneous occurrence of gammaglutamyltranspeptidase positive hepatocytic foci in 105-week old Wistar and 72-week-old Fischer 344 male rats, JNCI 67:407 (1981).

    PubMed  CAS  Google Scholar 

  71. G. M. William, Liver carcinogenesis: the role for some chemicals of an epigenetic mechanism of liver-tumor promotion involving modification of the cell membrane, Food Cosmet. Toxicol. 19:577 (1981).

    Article  Google Scholar 

  72. R. Schulte-Hermann, G. Ohde, J. Schuppler and I. Timmermann-Trosiener, Enhanced proliferation of putative preneoplastic cells in rat liver following treatment with the tumor promoters phenobarbital, hexachlorocyclohexane, steroid compounds, and nafenopin, Cancer Res. 41:2556 (1981).

    PubMed  CAS  Google Scholar 

  73. P. M. Newberne, Assessment of the hepatocarcinogenic potential of chemicals: Response of the liver, in.: “Toxicology of the Liver”, G. L. Plaa and W. R. Hewitt, eds., Raven Press, New York (1982).

    Google Scholar 

  74. R. Schulte-Hermann, I. Timmerman-Trosiener and J. Schuppler, Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by non-mutagenic compounds, Cancer Res. 43:2644 (1983).

    Google Scholar 

  75. J. M. Ward, Increased susceptibility of livers of aged F344/NCr rats to the effects of phenobarbital on the incidence, morphology and histochemistry of hepatocellular foci and neoplasms, J. Natl. Cancer Inst. 71:815 (1983).

    PubMed  CAS  Google Scholar 

  76. H. A. Solleveld, J. K. Haseman and E. E. McConnell, Natural history of weight gain, survival and neoplasia in the F344 rat, J. Natl. Cancer Inst. 72:929 (1984).

    PubMed  CAS  Google Scholar 

  77. T. Goldswothy, H. A. Campbell and H. C. Pitot, The natural history and dose-response characteristics of enzyme-altered foci in rat liver following phenobarbital and diethylnitrosamine administration, Carcinogenesis 5:67 (1984).

    Article  Google Scholar 

  78. J. A. Popp, B. H. Scartichini and L. K. Garvey, Quantitative evaluation of hepatic foci of cellular alteration occurring spontaneously in Fisher-344 rats, Fund. Appl. Toxicol. 5:314 (1985).

    Article  CAS  Google Scholar 

  79. G. Bode, F. Hartig, G. Hebold and H. Czerwek, Incidence of spontaneous tumors in laboratory rats, Exp. Path. 28:235 (1985).

    Article  CAS  Google Scholar 

  80. T. Tanaka, H. Mori and G. M. Williams, Enhancement of dimethylnitrosamine-initiated hepatocarcinogenesis in hamsters by subsequent administration of carbon tetrachloride but not phenobarbital or p, p’-dichlorodiphenyltrichloroethane, Carcinogenesis 8:1171 (1987).

    Article  PubMed  CAS  Google Scholar 

  81. M. A. Moore, K. Nakagawa, K. Satoh, T. Ishikawa and K. Sato, Single GST-P positive cells-putative initiated hepatocytes, Carcinogenesis 8:483 (1987).

    Article  PubMed  CAS  Google Scholar 

  82. R. J. Monnat, Jr. and L. A. Loeb, Mechanisms of neoplastic transformation, Cancer Invest. 1:175 (1983).

    Article  PubMed  Google Scholar 

  83. W. Den Otter, J. W. Koten and D. J. Kerkinderen, Carcinogenesis Revisited, Cancer Invest. 5:69 (1987).

    Article  Google Scholar 

  84. G. M. Ledda, M. A. Sells, S. Yokoyama and B. Lombardi, Metabolic properties of isolated rat liver cell preparations enriched in epithelial cells other than hepatocytes, Int. J. Cancer 31:231 (1983).

    Article  PubMed  CAS  Google Scholar 

  85. D. S. Longnecker, J. French, E. Hyde, H. S. Lilja and J. Yager, Jr., Effect of age on nodule induction by azaserine and DNA synthesis in rat pancreas, J. Natl. Cancer Inst. 58:1769 (1977).

    PubMed  CAS  Google Scholar 

  86. D. A. Banas, Evaluations of pancreas lesions in corn oil vehicle control rats: Comparison of quantity of pancreatic tissue examined to the number of proliferative lesions. Report submitted by Experimental Pathology Laboratories, Inc., to the National Toxicology Program, May 19, 1983.

    Google Scholar 

  87. G. A. Boorman and S. L. Eustis, Proliferative lesions of the exocrine pancreas in male F344/n rats, Environ. Health Perspect. 56:213 (1984).

    Article  PubMed  CAS  Google Scholar 

  88. S. L. Eustis and G. A. Boorman, Proliferative lesions of the exocrine pancreas: relationship to corn oil gavage in the National Toxicology Program, J. Natl. Cancer Inst. 75:1067 (1985).

    PubMed  CAS  Google Scholar 

  89. D. S. Longnecker, N. Chandar, B. D. Roebuck, D. G. Sheahan and B. Lombardi, Preneoplastic and neoplastic lesions in the pancreas of rats fed choline-devoid or choline-supplemented diets, with or without phenobarbital, in preparation.

    Google Scholar 

  90. P. M. Newberne, J. L. V. deCarmago and A. J. Clark, Choline deficiency, partial hepatectomy, and liver tumors in rats and mice, Toxicol. Pathol. 2:95 (1982).

    Article  Google Scholar 

  91. M. B. Sporn and G. J. Todaro, Autocrine secretion and malignant transformation of cells, New Engl. J. Med. 303:878 (1980).

    Article  PubMed  CAS  Google Scholar 

  92. H. S. Earp and E. J. O’Keefe, Epidermal growth factor receptor number decreases during rat liver regeneration, J. Clin. Invest. 67:1580 (1981).

    Article  PubMed  CAS  Google Scholar 

  93. A. Francavilla, P. Ove, L. Polimeno, C. Sciascia, M. L. Coetzee and T. E. Starzl, Epidermal growth factor and proliferation of rat hepatocytes in primary culture isolated at different times after partial hepatectomy, Cancer Res. 46:1318 (1986).

    PubMed  CAS  Google Scholar 

  94. D. R. LaBreque and N. R. Bachur, Hepatic stimulator substance: Physiochemical characteristics and specificity, Am. J. Physiol. 242:G281 (1982).

    Google Scholar 

  95. T. P. Iype and J. B. McMahon, Hepatic proliferation inhibitor, Mol. Cell. Biochem. 59:57 (1984).

    PubMed  CAS  Google Scholar 

  96. B. Lombardi, P. Ove and T. V. Reddy, Endogenous hepatic growth-modulating factors and effects of a choline-devoid diet and of phenobarbital on hepatocarcinogenesis in the rat, Nutr. Cancer 7:145 (1985).

    Article  PubMed  CAS  Google Scholar 

  97. J. M. Betschart, M. A. Virji, M. I. R. Perera and H. Shinozuka, Alterations in hepatocyte insulin receptors in rats fed a cholinedeficient diet, Cancer Res. 46:4425 (1986).

    PubMed  CAS  Google Scholar 

  98. C. Gupta, A. Hattori, J. M. Betschart, M. A. Virji and H. Shinozuka, Inhibition of EGF binding in rat hepatocytes by liver tumor promoters, Cancer Res. 28:173 (1987).

    Google Scholar 

  99. V. R. Potter, Initiation and promotion in cancer formation: the importance of studies on intercellular communication, Yale J. Biol. Med. 53:367 (1980).

    PubMed  CAS  Google Scholar 

  100. E. Scherer, Neoplastic progression in experimental hepatocarcinogenesis, Bioch. Biophys. Acta 738:219 (1984).

    CAS  Google Scholar 

  101. P. C. Nowell, The clonal evolution of tumor cell populations, Science 194:23 (1976).

    Article  PubMed  CAS  Google Scholar 

  102. A. W. Pound and L. J. McGuire, Repeated partial hepatectomy as a promoting stimulus for carcinogenic response of liver to nitrosamine in rats, Br. J. Cancer 37:585 (1978).

    Article  PubMed  CAS  Google Scholar 

  103. P. M. Newberne and H. E. Rogers, Labile methyl groups and the promotion of cancer, Ann. Rev. Nutrit. 6:407 (1986).

    Article  CAS  Google Scholar 

  104. T. V. Reddy, N. Chandar and B. Lombardi, in preparation.

    Google Scholar 

  105. N. Chander and B. Lombardi, in preparation.

    Google Scholar 

  106. T. H. Rushmore, E. Farber, A. K. Ghoshal, S. Parodi, M. Pala and M. Taningher, A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair, Carcinogenesis 7:1677 (1986).

    Article  PubMed  CAS  Google Scholar 

  107. G. Ugazio, L. Gabriel and E. Burdinor, Osservazioni sperimentali sui lipidi accumulati nel fegato di ratto alimentato con dieta colino priva, Sperimentale 117:1 (1967).

    PubMed  CAS  Google Scholar 

  108. T. H. Rushmore, Y. P. Linn, E. Farber and A. K. Ghoshal, Rapid lipid peroxidation in the nuclear fraction of rat liver induced by diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).

    Article  PubMed  CAS  Google Scholar 

  109. A. Ghoshal, T. H. Rushmore, Y. P. Linn and E. Farber, Early detection of lipid peroxidation in the hepatic nuclei of rats fed a diet deficient in choline and methionine (CMD), Proc. Am. Cancer Res. 25:94 (1984).

    Google Scholar 

  110. M. Comporti, Lipid peroxidation and cellular damage in toxic liver injury, Lab Invest. 53:599 (1985).

    PubMed  CAS  Google Scholar 

  111. S. Banni, F. Corongiu and B. Lombardi, in preparation.

    Google Scholar 

  112. F. P. Corongiu, G. Poli, M. U. Dianzani, K. V. Cheeseman and T. F. Slater, Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver. Recognition of two classes of hydroperoxides found under conditions in vivo, Chem. Biol. Interactions 59:147 (1986).

    Article  CAS  Google Scholar 

  113. R. J. Havel, Metabolism of lipids in chylomicrons and very low density lipoproteins, in: “Adipose Tissue”, A. E. Renold and G. F. Cahill, Jr., eds., American Physiological Society, Washington (1965).

    Google Scholar 

  114. M. I. R. Perera, A. J. Demetris, S. L. Katyal and H. Shinozuka, Lipid peroxidation of liver microsome membranes induced by choline-deficient diets and its relationship to the diet-induced promotion of the induction of gamma-glutamyltranspeptidase-positive foci, Cancer Res. 45:2533 (1985).

    PubMed  CAS  Google Scholar 

  115. M. A. Bansk and H. Shinozuka, Methapyrilene induces lipid peroxidation in the nuclear fraction of rat liver, Cancer Res. 28:90 (1987).

    Google Scholar 

  116. A. J. Monserrat, A. K. Ghoshal, W. S. Hartroft and E. A. Porta, Lipoperoxidation in the pathogenesis of renal necrosis in cholinedeficient rats, Am J. Path. 55:163 (1969).

    PubMed  CAS  Google Scholar 

  117. A. Sevanian and P. Hochstein, Mechanisms and consequences of lipid peroxidation in biological systems, Ann. Rev. Nutrit. 5:365 (1985).

    Article  CAS  Google Scholar 

  118. H. Sidransky and E. Verney, Influence of ethionine on choline-deficiency fatty liver, J. Nutrit. 97:419 (1969).

    PubMed  CAS  Google Scholar 

  119. E. Usdiu, R. T. Borchardt and C. R. Creveling, eds., “Transmethylation”, Elsevier, New York, (1979).

    Google Scholar 

  120. J. Locker, T. V. Reddy and B. Lombardi, DNA methylation and hepatocarcinogenesis in rats fed a choline-devoid diet, Carcinogenesis 7:1309 (1986).

    Article  PubMed  CAS  Google Scholar 

  121. J. Locker, S. Hunt and B. Lombardi, Alpha-fetoprotein gene methylation and hepatocarcinogenesis in rats fed a choline-devoid diet, Carcinogenesis 8:241 (1986).

    Article  Google Scholar 

  122. R. Holliday, A new theory of carcinogenesis, Br. J. Cancer 40:513 (1979).

    Article  PubMed  CAS  Google Scholar 

  123. R. M. Hoffman, Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis, Biochim. Biophys. Acta 738:49 (1983).

    Google Scholar 

  124. R. Holliday, The inheritance of epigenetic defects, Science 238:163 (1987).

    Article  PubMed  CAS  Google Scholar 

  125. N. Chandar, B. Lombardi, W. Schultz and J. Locker, Analysis of ras genes and linked viral sequences in rat hepatocarcinogenesis, Am. J. Path, in press.

    Google Scholar 

  126. R. Muller and I. Verma, Expression of cellular oncogenes, Curr. Topics Microbiol. Immunol. 112:73 (1984).

    Article  CAS  Google Scholar 

  127. T. Tanaka, D. J. Slamon, H. Battifora and M. J. Cline, Expression of 21 ras oncoproteins in human cancers, Cancer Res. 46:1465 (1986).

    PubMed  CAS  Google Scholar 

  128. N. Fausto and P. R. Shank, Oncogene expression in liver regeneration and hepatocarcinogenesis, Hepatology (Baltimore) 3:1016 (1983).

    Article  PubMed  CAS  Google Scholar 

  129. J. M. Bishop, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 53:301 (1983).

    Article  Google Scholar 

  130. J. L. Marx, Oncogene action probed, Science 237:602 (1987).

    Article  PubMed  CAS  Google Scholar 

  131. P. K. Vogt, The Seventeenth International Symposium of the Princess Takamatsu Cancer Research Fund: Oncogenes and Cancer, GANN 78:529 (1987).

    Google Scholar 

  132. B. I. Weinstein, Growth factors, oncogenes and multistage carcinogenesis, J. Cell. Biochem. 33:213 (1987).

    Article  PubMed  CAS  Google Scholar 

  133. V. Chiarugi, M. Ruggiero and F. Porciatti, Oncogenes and transmembrane cell signaling, Cancer Inv. 5:215 (1987).

    Article  CAS  Google Scholar 

  134. M. B. Sporn, A. B. Roberts, L. M. Wakefield and R. K. Assoian, Transforming growth factor-beta: biological function and chemical structure, Science 233:532 (1986).

    Article  PubMed  CAS  Google Scholar 

  135. E. Farber, The multistep nature of cancer development, Cancer Res. 44:4217 (1984).

    PubMed  CAS  Google Scholar 

  136. S. H. Yuspa, T. Ben, H. Hennings and U. Lichti, Divergent responses in epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoylphorbal-13-acetate, Cancer Res. 42:2344 (1982).

    PubMed  CAS  Google Scholar 

  137. S. Yokoyama and B. Lombardi, Stage dependent enhanced induction of hepatocellular carcinomas in rats administered a second dose of diethylnitrosamine, Cancer Lett. 25:171 (1985).

    Article  Google Scholar 

  138. S. N. Zaman, W. M. Melia, R. D. Johnson, B. L. Portman, P. J. Johnson and R. Williams, Risk factors in development of hepatocellular carcinoma in cirrhosis: prospective study of 613 patients, Lancet 1:1357 (9185).

    Google Scholar 

  139. K. Okuda, I. Fujimoto, A. Hanai and Y. Urano, Changing incidence of hepatocellular carcinoma in Japan, Cancer Res. 47:4967 (1987).

    PubMed  CAS  Google Scholar 

  140. P. P. Anthony, K. G. Ishak, N. C. Nayak, H. E. Pulsen, P. J. Schever and L. H. Sobin, The morphology of cirrhosis: definition, nomenclature, and classification, Bull. WHO 55:521 (1977).

    PubMed  CAS  Google Scholar 

  141. A. Baggenstoss, R. D. Soloway, W. H. J. Summerskill, L. R. Elveback and L. J. Schoenfield, Chronic active liver disease. The range of histologic lesions, their response to treatment and evolution, Hum. Pathol. 3:183 (1972).

    Article  PubMed  CAS  Google Scholar 

  142. D. Ganem and H. E. Varmus, The molecular biology of the hepatitis B virus, Ann. Rev. Biochem. 56:651 (1987).

    Article  PubMed  CAS  Google Scholar 

  143. D. E. Koshland, Jr., Immortality and risk assessment, Science 236:241 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lombardi, B. (1988). The Choline-Devoid Diet Model of Hepatocarcinogenesis in the Rat. In: Feo, F., Pani, P., Columbano, A., Garcea, R. (eds) Chemical Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9640-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9640-7_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9642-1

  • Online ISBN: 978-1-4757-9640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics