Lipids as Effectors and Mediators in Growth Control of Ascites Tumor Cells

  • Eberhard W. Haeffner
  • Joanna B. Strosznajder
  • Claudia J. K. Hoffmann


The growth requirement of some cell types for preformed cholesterol, normally supplied by the serum, has been established1–5. Cholesterol, which is a major component in the plasma membrane of eukaryotes, modulates bilayer fluidity6, and affects the activity of membrane-bound enzymes7. It can also modulate e.g. the characteristics of the beta-adrenergic receptor8.


Mevalonic Acid Chicken Embryo Fibroblast Ascites Cell Ehrlich Ascites Carcinoma Cell German Cancer Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Holmes, J. Helms and G. Mercer, Cholesterol requirement of primary diploid human fibroblasts, J. Cell Biol. 42:262 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Kahane and S. Razin, Cholesterol-phosphatidylcholine dispersions as donors of cholesterol to mycoplasma membranes, Biochim. Biophys. Acta 471:32 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Monard, M. Rentsch, Y. Schuerch-Rathgeb and R. M. Lindsay, Morphological differentiation of neuroblastoma cells in medium supplemented with delipidated serum, Proc. Natl. Acad. Sci. USA 74:3893 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    J. M. Odriozola, E. Waitzkin, T. L. Smith and K. Bloch, Sterol requirement of mycoplasma capricolum, Proc. Natl. Acad. Sci. USA 75:4107 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    R. E. Ostlund, Jr. and J. W. Yang, Effect of cholesterol and growth factors on the proliferation of cultured human skin fibroblasts, Exp. Cell Res. 161:509 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Oldfield and D. Chapman, Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol, FEBS Lett. 23:285 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    P. L. Yeagle, Cholesterol modulation of (Na+ + K+)-ATPase ATP hydrolyzirig activity in the human erythrocyte, Biochim. Biophys. Acta 727:39 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    P. J. Scarpace, S. J. O’Connor and I. B. Abrass, Cholesterol modulation of beta-adrenergic receptor characteristics, Biochim. Biophys Acta 845:520 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    D. E. Brennemann, L. McGee and A. A. Spector, Cholesterol metabolism in the Ehrlich ascites tumor, Cancer Res. 34:2605 (1974).Google Scholar
  10. 10.
    E. W. Haeffner, C. J. K. Hoffmann, M. Stoehr and H. Scherf, Cholesterol induced growth stimulation, cell aggregation and membrane properties of ascites tumor cells in culture, Cancer Res. 44:2668 (1984).PubMedGoogle Scholar
  11. 11.
    K. H. Hellstrom, M. D. Sipperstein, L. A. Bricker and L. J. Luby, Studies of the in vivo metabolism of mevalonic acid in the normal rat, J. Clin. Invest. 52:1303 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Burns, I. R. Welshman, J. Edmond and A. A. Spector, Evidence for rate-limiting steps in sterol synthesis beyond 3-hydroxy-3-methylglutaryl-coenzyme A reductase in human leukocytes, Biochim. Biophys. Acta 572:345 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Burns, I. R. Welshman, T. J. Scallen and A. A. Spector, Mechanism of defective sterol synthesis in human leukocytes, Biochim. Biophys. Acta 713:519 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    W. H. Moolenar, W. Kruijer, B. C. Tilly, I. Verlaan, A. J. Bierman and S. W. de Laat, Growth factor-like action of phosphatidic acid, Nature (Lond.) 323:171 (1986).CrossRefGoogle Scholar
  15. 15.
    H. M’Zali and F. Giraud, Phosphoinositide reorganization in human erythrocyte membrane upon cholesterol depletion, Biochem. J. 234:13 (1986).PubMedGoogle Scholar
  16. 16.
    L. M. Corwin, I. P. Humphrey and J. Shloss, Effect of lipids on the expression of cell transformation, Exp. Cell Res. 108:341 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    E. W. Haeffner, K. Kolbe, D. Schroeter and N. Paweletz, Plasma membrane heterogeneity in ascites tumor cells. Isolation of a light and a heavy membrane fraction of the glycogen-free Ehrlich-Lettr substrain, Biochim. Biophys. Acta 603:306 (1980).Google Scholar
  18. 18.
    E. W. Haeffner, A. Holl and D. Schroeter, Preparation of two plasma membrane fractions from ascites tumor cells by gel chromatography on Sephacryl S-1000, J. Chromatogr. 382:107 (1986).PubMedGoogle Scholar
  19. 19.
    J. Folch, M. Lees and G. H. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226:497 (1957).PubMedGoogle Scholar
  20. 20.
    E. W. Haeffner and C. J. K. Hoffmann, Direct quantitation of free cholesterol from total serum lipid extracts by computer-assisted gas liquid chromatography, J. Chromatogr. 228:268 (1982).PubMedGoogle Scholar
  21. 21.
    M. J. Berridge, R. M. C. Dawson, C. P. Downes, J. P. Heslop and R. F. Irvine, Changes in the levels of inositol phosphates after agonistdependent hydrolysis of membrane phosphoinositides, Biochem. J. 212:473 (1983).PubMedGoogle Scholar
  22. 22.
    H. Wikiel and J. Strosznajder, Phospatidylinositol degradation in ischemic brain specifically activated by synaptosomal enzymes, FEBS Lett. 216:57 (1987)PubMedCrossRefGoogle Scholar
  23. 23.
    R. J. B. Garrett and C. M. Redman, Localization of enzymes involved in polyphosphoinositide metabolism on the cytoplasmic surface of the human erythrocyte membrane, Biochim. Biophys. Acta 382:58 (1975).CrossRefGoogle Scholar
  24. 24.
    H. A. Hale, J. E. Pessin, F. Palmer, M. J. Weber, and M. Glaser, Modification of the lipid composition of normal and Rous sarcoma virusinfected cells, J. Biol. Chem. 252:6190 (1977).PubMedGoogle Scholar
  25. 25.
    W. Lehmann, H. Graetz, M. Schütt, and P. Langen, Antagonistic effects of insulin and a negative growth regulator from ascites fluid on the growth of Ehrlich ascites carcinoma cells in vitro, Exp. Cell Res. 119:396 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    D. Barnes and G. H. Sato, Growth of human mammary tumor cell line in a serum-free medium, Nature (Lond.) 281:388 (1979).CrossRefGoogle Scholar
  27. 27.
    M. M. Burger, Cell surfaces in neoplastic transformation, in: “Current Topics in Cellular Regulation”, B. L. Horecker and E. R. Stadtman, eds., Academic Press, New York (1971).Google Scholar
  28. 28.
    K. Bloch, Sterol structure and membrane function, in: “Current Topics in Cellular Regulation, Biological Cycles”, R. W. Estabrook and P. Srere, eds., Academic Press, New York (1981).Google Scholar
  29. 29.
    J. Avigan, C. D. Williams, and J. P. Blass, Regulation of sterol synthesis in human skin fibroblast cultures, Biochim. Biophys. Acta 218:381 (1970).CrossRefGoogle Scholar
  30. 30.
    M. S. Brown and J. L. Goldstein, Multivalent feed-back regulation of HMG-CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth, J. Lipid Res. 21:505 (1980).PubMedGoogle Scholar
  31. 31.
    J. R. Sabine, Defective control of cholesterol synthesis and the development of liver cancer: a review, in: “ Tumor Lipids: Biochemistry and Metabolism”, R. Wood, ed., American Oil Chemists’ Society, Champaign (1973).Google Scholar
  32. 32.
    F. Schroeder, Use of fluorescent sterol to probe the transbilayer distribution of sterols in biological membranes, FEBS Lett. 135:127 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Eberhard W. Haeffner
    • 1
  • Joanna B. Strosznajder
    • 2
  • Claudia J. K. Hoffmann
    • 1
  1. 1.Institute of Cell and Tumor BiologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of NeurochemistryMedical Research Center Polish Academy of SciencesWarsawPoland

Personalised recommendations