Skip to main content

The Wound Response as a Key Element for an Understanding of Multistage Carcinogenesis in Skin

  • Chapter
Chemical Carcinogenesis

Abstract

The general appearance of skin carcinoma is that of a steadily growing wound. Thus, Haddow’s famous affirmation “the wound may be regarded as a tumor which heals itself”1 may be also read the other way around, i.e. that a tumor may be regarded as a wound which does not heal. A huge amount of literature dealing with the assumed relationship between wound repair and carcinogenesis has indeed been accumulated (see ref. 1, 6). Only very recently, however, the methods of cell biology, biochemistry and molecular biology have reached a level where they enable the investigator to proof this relationship in clear-cut experimental approaches aiming at an understanding of the molecular mechanisms involved in both wound repair and carcinogenesis. One of the most exciting results of these novel approaches is the discovery that the majority of proto-oncogenes code for components of cellular pathways which are required for the transduction of growth-stimulating signals, especially of those provided by the peptide growth factors2. While the physiological role of such growth factors is still not entirely understood, there is accumulating evidence indicating that at least some of them (such as EGF, TGFα, TGFß, PDGF) may be involved in tissue repair and regeneration rather than in the control of everyday tissue growth3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Haddow, Molecular repair, wound healing and carcinogenesis: tumor production a possible overhealing? Adv. Cancer Res. 16:181 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. F. Marks, What’s new in oncogenes and growth factors? Pathology Res Pract. 182:831 (1988).

    Article  Google Scholar 

  3. M. B. Sporn and A. B. Roberts, Peptide growth factors and inflammation, tissue repair and cancer, J. Clin Invest. 78:329 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. H. Hennings and R. K. Boutwell, Studies on the mechanism of skin tumor promotion, Cancer Res. 30:312 (1970).

    CAS  PubMed  Google Scholar 

  5. I. Clark-Lewis and A. W. Murray, Tumor promotion and the induction of epidermal ornithine decarboxylase activity in mechanically stimulated mouse skin, Cancer Res. 38:494 (1978).

    CAS  PubMed  Google Scholar 

  6. T. S. Argyris, Regeneration and the mechanism of epidermal tumor promotion, CRC Crit. Rev. Toxicol. 14:211 (1986).

    Article  Google Scholar 

  7. G. Fürstenberger and F. Marks, Growth stimulation and tumor promotion in skin, J. Invest. Dermatol. 81:157s (1983).

    Article  PubMed  Google Scholar 

  8. F. Marks and G. Fürstenberger, Multistage carcinogenesis: The mouse skin model, in: “Accomplishments in Oncology”, Vol. 2/1, H. zur Hausen and J. R. Schlehofer, eds., Lippincott, Philadelphia (1987).

    Google Scholar 

  9. F. Marks and G. Fürstenberger, From the normal cell to cancer: The multistep process of experimental skin carcinogenesis, in: “Concepts and Theories in Carcinogenesis”, A. P. Maskens, P. Ebbesen and A. Burny, eds., Excerpta Medica, Amsterdam (1987).

    Google Scholar 

  10. F. Marks and G. Fürstenberger, Multistage carcinogenesis in animal skin: The reductionist’s approach in cancer research, in: “Theories of Carcinogenesis”, O. H. Iversen, ed., Hemisphere, Washington D.C. (1988).

    Google Scholar 

  11. F. J. Burns, M. Vanderlaan, E. Snyder and R. E. Albert, Induction and progression kinetics of mouse skin papillomas, in: “Mechanisms of Tumor Promotion and Cocarcinogenesis”, T. J. Slaga, A. Sivak and R. K. Boutwell, eds., Raven Press, New York (1978).

    Google Scholar 

  12. E. E. Sisskin, T. Gray and J. C. Barrett, Correlation between sensitivity to tumor promotion and sustained epidermal hyperplasia of mice and rats treated with TPA, Carcinogenesis 3:403 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. R. K. Boutwell, Some biological aspects of skin carcinogenesis, Progr Exp Tumor Res. 4:207 (1964).

    CAS  PubMed  Google Scholar 

  14. T. J. Slaga, S. M. Fischer, K. Nelson and G. L. Gleason, Studies on the mechanism of skin tumor promotion: Evidence for several stages of promotion, Proc Natl Acad Sci USA 77:3659 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. G. Fürstenberger, D. L. Berry, B. Sorg and F. Marks, Skin tumor promotion by phorbol esters is a two-stage process, Proc Natl Acad Sci. USA 78:7722 (1981).

    Article  PubMed  Google Scholar 

  16. G. Fürstenberger, V. Kinzel, M. Schwarz and F. Marks, Partial inversion of the initiation-promotion sequence of multistage tumorigenesis in the skin of NMRI mice, Science 230:76 (1985).

    Article  PubMed  Google Scholar 

  17. H. Hennings, R. Shores, M. L. Wenk, E. F. Spangler, R. Tarone and S. H. Yuspa, Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters, Nature 304:67 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. A. L. Reddy, M. Caldwell and P. J. Fialkow, Studies of skin tumorigenesis in PGK mosaic mice: Many promoter-independent papillomas and carcinomas do not develop from pre-existing promoter-dependent papillomas, Int. J. Cancer 39:261 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. A. L. Reddy, M. Caldwell and P. J. Fialkow, Sequential studies of skin tumorigenesis in phosphoglycerate kinase mosaic mice: Effect of resumption of promotion on regressed papillomas, Cancer Res. 47:1947 (1987).

    CAS  PubMed  Google Scholar 

  20. M. Quintanilla, K. Brown, M. Ramsden and A. Balmain, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis, Nature 322:78 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. A. Balmain and K. Brown, Oncogene activation in chemical carcinogenesis, Adv. Cancer Res. in press (1987).

    Google Scholar 

  22. F. Marks, S. Bertsch, G. Fürstenberger and H. Richter, Growth control in mouse epidermis: Facts and speculations, in: “Psoriasis: Cell Proliferation”, N. A. Wright and R. S. Camplejohn, eds., Churchill Livingstone, Edinburgh (1983).

    Google Scholar 

  23. F. Marks, G. Fürstenberger, M. Ganss, H. Richter and D. Seemann, Hyperplastic transformation: The response of mouse skin to injury, Brit J. Dermatol. 109, Suppl. 25:18 (1983).

    CAS  Google Scholar 

  24. G. S. Schultz, M. White and R. Mitchell, Epithelial wound healing enhanced by transforming growth factor-a and by Vaccinia growth factor, Science 235:350 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. A. B. Schreiber, M. E. Winkler and R. Derynck, Transforming growth factor-α: A more potent angiogenic mediator than epidermal growth factor, Science 232:1250 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche, L. M. Wakefield, U. I. Heine, L. A. Liotta, V. Falanger, J. H. Keteri and A. S. Fanci, Transforming growth factor type ß: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167 (1986).

    Article  CAS  Google Scholar 

  27. R. J. Coffey, R. Derynck, J. N. Wilcox, T. S. Bringman, A. S. Goustin, H. L. Moses and M. R. Pittelkow, Production and auto-induction of transforming growth factor-a in human keratinocytes, Nature 328:817 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. G. Fürstenberger and F. Marks, Prostaglandins, epidermal hyperplasia and skin tumor promotion, in: “Arachidonic Acid Metabolism and Tumor Promotion”, S. M. Fischer and T. J. Slaga, eds., Nijhoff, Boston (1985).

    Google Scholar 

  29. F. Marks and G. Fürstenberger, Tumor promotion in skin: Are active oxygen species involved? in: “Oxidative Stress”, H. Sies, ed., Academic Press, New York (1985).

    Google Scholar 

  30. W. Troll and R. Wiesner, The role of oxygen radicals as possible mechanism of tumor promotion, Ann. Rev. Pharmacol. Toxicol. 25:509 (1985).

    Article  CAS  Google Scholar 

  31. M. Castagna, Y. Takai, K. Kaibuchi, K. Sano, V. Kikkawa and Y. Nishizuka, Direct activation of calcium-activated, phospholipid-dependent protein-kinase by tumor-promoting phorbol esters, J. Biol Chem. 257:7847 (1982).

    CAS  PubMed  Google Scholar 

  32. R. C. Smart, M. Huang and A. H. Conney, sn-1,2-Diacylglycerols mimic the effects of TPA in vivo by inducing biochemical changes associated with tumor promotion in mouse epidermis, Carcinogenesis 7:1865 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. H. Yamasaki, Aberrant control of intercellular communication and cell differentiation during carcinogenesis, in: “Concepts and Theories in Carcinogenesis”, A. P. Maskens, P. Ebbesen and A. Burny, eds., Excerpta Medica, Amsterdam (1987).

    Google Scholar 

  34. A. A. Abdel-Latif, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev. 38:228 (1986).

    Google Scholar 

  35. M. J. Berridge, Inositol lipids and cell proliferation, Biochim Biophys. Acta 907:33 (1987).

    CAS  PubMed  Google Scholar 

  36. M. Gschwendt, W. Kittstein and F. Marks, Cyclosporin A inhibits phorbol ester-induced hyperplastic transformation and tumor promotion in mouse skin probably by suppression of Ca /calmodulin-dependent processes such as phosphorylation of elongation factor 2, Skin Pharmacol. in press (1988).

    Google Scholar 

  37. R. Sager, Genetic suppression of tumor formation, Adv. Cancer Res. 44:43 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. A. C. Knudson, Hereditary cancer, oncogenes and anti-oncogenes, Cancer Res. 45:1437 (1985).

    CAS  PubMed  Google Scholar 

  39. J. A. McCutcheon, J. C. Bickenbach and J. C. Mackenzie, Effect on label-retaining cells of tumor prompters and differing levels of hyperplasia, J. Dental Res. 64:298 (1985).

    Google Scholar 

  40. A. R. Kinsella and M. Radman, Tumor promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis, Proc. Natl. Acad. Sci. USA 75:6149 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. H. C. Birnboim, DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate, Science 211:1247 (1982).

    Article  Google Scholar 

  42. D. R. Dutton and G. T. Bowden, Indirect induction of clastogenic effect in epidermal cells by a tumor promoter, Carcinogensis 6:1279 (1985).

    Article  CAS  Google Scholar 

  43. J. A. Hartley, N. W. Gibson, L. A. Zwelling and S. H. Yuspa, The association of DNA strand breaks and terminal differentiation in mouse epidermal cells exposed to tumor promoters, Cancer Res. 45:4864 (1985).

    CAS  PubMed  Google Scholar 

  44. J. M. Parry, E. M. Parry and J. C. Barrett, Tumor promoters induce mitotic aneuploidy in yeast, Nature 294:263 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. D. F. Callen and J. H. Ford, Chromosome abnormalities in chronic lymphocytic leukemia revealed by TPA as mitogen, Cancer Genet Cytogenet. 10:87 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. I. Emerit and P. A. Cerutti, Tumor promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action, Nature 293:144 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. R. J. Imbra and M. Karin, Phorbol ester induces the transcriptional stimulatory activity of the SV40 enhancer, Nature 323:555 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. P. B. Fisher, I. B. Weinstein, D. Eisenberg and H. S. Ginsberg, Interactions between adenovirus, a tumor promoter, and chemical carcinogens in transformation of rat embryo cell cultures, Proc. Natl. Acad. Sci. USA 75:2311 (1978).

    Article  CAS  PubMed  Google Scholar 

  49. H. zur Hausen, F. J. O’Neill and U. K. Freese, Persisting oncogenic herpes-virus induced by the tumor promoter TPA, Nature 272:373 (1978).

    Article  PubMed  Google Scholar 

  50. H. zur Hausen, G. W. Bornkamm, R. Schmidt and E. Hecker, Tumor initiators and promoters in the induction of Epstein-Barr virus, Proc. Natl. Acad. Sci. USA 76:782 (1979).

    Article  PubMed  Google Scholar 

  51. A. K. Verma, D. Erickson and B. J. Dolnick, Increased mouse epidermal ornithine decarboxylase activity by the tumor promoter TPA involves increased amounts of both enzyme protein and messenger RNA, Biochem. J. 237:297 (1986).

    CAS  PubMed  Google Scholar 

  52. S. K. Gilmour, A. K. Verma, Th. Madara and T. G. O’Brien, Regulation of ornithine decarboxylase gene expression in mouse epidermis and in epidermal tumors during two-stage tumorigenesis, Cancer Res. 47:1221 (1987).

    CAS  PubMed  Google Scholar 

  53. S. Rose-John, G. Fürstenberger, P. Krieg, E. Besemfelder, G. Rincke and F. Marks, Differential effects of phorbol esters on c-fos and c-myc and ornithine decarboxylase gene expression in mouse skin in vivo, Carcinogenesis: in press (1988).

    Google Scholar 

  54. M. E. Greenberg and E. B. Ziff, Stimulation of 3T3 cells induces transcription of the c-fos protooncogene, Nature 311:433 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. R. Mueller, R. Bravo, J. Burckhardt and T. Curran, Induction of c-fos-gene and protein by growth factors precedes activation of c-myc, Nature 312:716 (1984).

    Article  Google Scholar 

  56. G. P. Dotto, M. Z. Gilman, M. Maruyama and R. A. Weinberg, c-myc and c-fos expression in differentiating mouse primary keratinocytes, Embo. J. 5:2853 (1986).

    CAS  PubMed  Google Scholar 

  57. R. T. Petrusevska, G. Fürstenberger, F. Marks and N. E. Fusenig, Cytogenetic effects caused by phorbol ester tumor promoters in primary mouse keratinocyte cultures: Correlation with the convertogenic activity of TPA in multistage skin carcinogenesis, Carcinogenesis, in press (1988).

    Google Scholar 

  58. R. T. Petrusevska, N. Pohlmann and N. E. Fusenig, Induction of chromosomal abberations in primary mouse keratinocyte cultures by tumorpromoting phorbol esters and inhibition of cytogenetic effects by antipromoters, in: “Accomplishments in Oncology”, Vol. 2/1, H. zur Hausen and J. R. Schlehofer, eds., Lippincott, Philadelphia (1987).

    Google Scholar 

  59. E. Vogel and A. T. Natarajan, The relation between reaction kinetics and mutagenic actions of monofunctional alkylating agents in higher eukaryotic systems. II. Total and partial sex-chromosome loss in Drosophila, Mutation Res. 62:101 (1979).

    Article  CAS  PubMed  Google Scholar 

  60. E. Vogel and A. T. Natarajan, The relation between reaction kinetics and mutagenic action of monofunctional alkylating agents in higher eukaryotic systems: Interspecies comparisons, in: “Chemical Mutagens”, Vol. 7, F. J. de Serres and A. Hollaender, eds., Plenum Press, New York (1982).

    Google Scholar 

  61. D. B. Couch, N. L. Forbes and A. W. Hsie, Comparative mutagenicity of alkyl sulfate and alkane sulfonate derivatives in Chinese hamster ovary cells, Mutation Res. 57:217 (1978).

    Article  CAS  PubMed  Google Scholar 

  62. S. M. Morris, R. H. Heflich, D. T. Beranek and R. L. Kodell, Alkylation-induced sister-chromatid exchanges correlate with reduced cell survival, not mutations, Mutation Res. 105:163 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. A. T. Natarajan, J. W. I. M. Simons, E. W. Vogel and A. A. van Zeeland, Relationship between cell killing, chromosomal aberrations, sister-chromatid exchanges and point mutations induced by monofunctional alkylating agents in Chinese hamster cells. A correlation with different ethylation products in DNA, Mutation Res. 128:31 (1984).

    Article  CAS  PubMed  Google Scholar 

  64. K. Frenkel and K. Chrzan, Hydrogen peroxide formation and DNA base modification by tumor promoter-activated polymorphonuclear leukocytes, Carcinogenesis 8:455 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. P. A. Cerutti, Pro-oxidant states and tumor promotion, Science 227:375 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. J. Emerit and P. A. Cerutti, Eicosanoids and chromosomal damage, in: “Icosanoids and Cancer”, H. Thaler-Dao, A. Crastes de Paulet and R. Paoletti, eds., Raven Press, New York (1984).

    Google Scholar 

  67. T. Ochi and P. Cerutti, Clastogenic action of hydroperoxy-5,8,11,13-icosatetraenoic acids on mouse embryo fibroblasts C3H/10T1/2, Proc. Natl. Acad. Sci. USA 84:990 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. G. Fürstenberger, M. Gschwendt, H. Hagedorn and F. Marks, Modulation of the conversion stage of multistep carcinogenesis in mouse skin by eicosanoids, in: “Prostaglandins in Cancer Research”, E. Garaci, R. Paoletti and M. G. Santoro, eds., Springer, Berlin-Heidelberg (1987).

    Google Scholar 

  69. G. Bauer, P. Höfler and M. Simon, Epstein-Barr-Virus induction by a serum factor: Purification of a high molecular weight protein that is responsible for induction, J. Biol. Chem. 257:11405 (1982).

    CAS  PubMed  Google Scholar 

  70. G. Bauer, P. Höfler and M. Simon, Epstein-Barr-Virus induction by a serum factor: Characterization of the purified factor and the mechanism of its activation, J. Biol. Chem. 257:11411 (1982).

    CAS  PubMed  Google Scholar 

  71. G. Bauer, Epstein-Barr-Virus inducing factor: A growth factor with tumor promoting activity, J. Cancer Res. Clin. Oncol. 109:A48 (1985).

    Google Scholar 

  72. M. Rogers, G. Fürstenberger, G. Bauer, P. Höfler and F. Marks, EIF (Epstein-Barr-Virus inducing factor), a peptide factor with TFGß-activity, is a convertogenic agent (“stage I tumor promoter”) in mouse skin in vivo. Proc. 3rd Int. Congress Hormones and Cancer, Raven Press, New York (1988) (in press).

    Google Scholar 

  73. V. Kinzel, H. Loehrke, K. Goerttler, G. Fürstenberger and F. Marks, Suppression of the first stage of TPA-effected tumor promotion in mouse skin by non-toxic inhibition of DNA synthesis, Proc. Natl. Acad. Sci. USA 81:5858 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. J. C. Gaal, K. R. Smith and C. K. Pearson, Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular metabolism, Trends Bioch. Sci. 12:129 (1987).

    Article  CAS  Google Scholar 

  75. C. B. Croft and D. Tarin, Ultrastructural studies of wound healing in mouse skin. I. Epithelial behavior, J. Anat. 105:63 (1970).

    Google Scholar 

  76. J. J. Cohen and R. C. Duke, Glucocorticoid activation of a Ca2+− dependent endonuclease in lymphocyte nuclei leads to cell death, J. Immunol. 132:38 (1984).

    CAS  PubMed  Google Scholar 

  77. E. Duvall and A. H. Wyllie, Death and the cell, Immunology Today 7:115 (1986).

    Article  CAS  Google Scholar 

  78. C. Richter, B. Frei and P. A. Cerutti, Mobilization of mitochondrial Ca2+ by hydroperoxyeicosatetraenoid acid, Biochim. Biophys. Res. Commun. 143:609 (1987).

    Article  CAS  Google Scholar 

  79. P. Csermely, R. Fodor and J. Somogyi, The tumor promoter TPA elecits redistribution of heavy metals in subcellular fractions of rabbit thymocytes as measured by plasma emission spectroscopy, Carcinogenesis 8:1663 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. T. Masui, L. M. Wakefield, J. F. Lechner, M. A. Laveck, M. B. Sporn and C. C. Harris, Type ß transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial cells, Proc. Natl. Acad. Sci. USA 83:2438 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. O. H. Iversen, ed., “Theories of Carcinogenesis”, Hemisphere, Washington (1988).

    Google Scholar 

  82. A. P. Maskens, P. Ebbesen and A. Burny, eds., “Concepts and Theories in Carcinogenesis”, Excerpta Medica, Amsterdam (1987).

    Google Scholar 

  83. J. J. Slaga, Can tumor promotion be effectively inhibited? in: “Models, Mechanisms and Etiology of Tumor Promotion”, M. Börszönyi, K. Lapis, N. E. Day and H. Yamasaki, eds., Int. Agency for Res. on Cancer, IARC, Lyon (1984).

    Google Scholar 

  84. T. J. Slaga, Multistage tumor promotion and specificity of inhibition, in: “Mechanisms of Tumor Promotion”, Vol II, T. J. Slaga, ed., CRC Press Boca Raton, Florida (1984).

    Google Scholar 

  85. M. Gschwendt, W. Kittstein and F. Marks, Cyclosporin A inhibits phorbol ester-induced cellular proliferation and tumor promotion as well as phosphorylation of a 100-kD protein in mouse epidermis, Carcinogenesis 8:203 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. M. Gschwendt, W. Kittstein and F. Marks, Didemnin B inhibits biological effects of tumor promoting phorbol esters on mouse skin, as well as phosphorylation of a 100 kD protein in mouse epidermis cytosol, Cancer Letters 34:187 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. M. Gschwendt, W. Kittstein and F. Marks, The weak immunosuppressant cyclosporine D as well as the immunologically inactive cyclosporine H are potent inhibitors in vivo of phorbol ester TPA-induced biological effects in mouse skin and of Ca2+/calmodulin-dependent EF-2 phosphorylation in vitro, Biochem. Biophys. Res. Commun. 150:545 (1988). press (1988).

    Article  CAS  PubMed  Google Scholar 

  88. M. Gschwendt, G. Fürstenberger, W. Kittstein, E. Besemfelder, W. E. Hull, H. Hagedorn, H. J. Opferkuch and F. Marks, Generation of the arachidonic acid metabolite 8-HETE by extracts of mouse skin treated with phorbol ester in vivo; identification by 1H-n.m.r. and GC-MS spectroscopy, Carcinogenesis 7:449 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. S. M. Fischer, G. Fürstenberger, F. Marks and T. J. Slaga, Events associated with mouse skin tumor promotion with aspect to arachidonic acid metabolism: A comparison between SENCAR and NMRI mice, Cancer Res. 47:3174 (1987).

    CAS  PubMed  Google Scholar 

  90. M. Gross, G. Fürstenberger and F. Marks, Isolation, characterization, and in vitro cultivation of keratinocyte subfractions from adult NMRI mouse epidermis: epidermal target cells for phorbol esters, Exp. Cell Res. 171:460 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. R. T. Dzarlieva-Petrusevska, N. E. Fusenig, Tumor promoter 12-0-tetra-decanoylphorbol-13-acetate (TPA)-induced chromosome aberrations in mouse keratinocyte cell lines: a possible genetic mechanism of tumor promotion, Carcinogenesis 6:1447 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marks, F. et al. (1988). The Wound Response as a Key Element for an Understanding of Multistage Carcinogenesis in Skin. In: Feo, F., Pani, P., Columbano, A., Garcea, R. (eds) Chemical Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9640-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9640-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9642-1

  • Online ISBN: 978-1-4757-9640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics