Electrophysiology of Osteoclasts and Macrophages

  • S. Jeffrey Dixon
  • Stuart A. Arkett
  • Stephen M. Sims
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


Membrane potential and ionic conductances play a role in regulating many cell functions. In macrophages, it has been suggested that ionic currents participate in transmembrane signaling, phagocytosis, secretion, and motility (Ince et al., 1988; Riches et al., 1988; Gallin, 1991). Macrophages have been shown to possess several different types of K+ and Cl-channels. Osteoclasts, which are specialized cells responsible for resorption of mineralized tissues, have a number of different plasma membrane ion transporters, including a proton ATPase, as well as K+ and Cl-channels. These ion channels and transporters are thought to be involved in the process and regulation of H+ transport, and hence bone resorption (Vaes, 1988; Blair et al., 1989, 1991; Hall, 1991; Sims et al.,1992).


Membrane Potential Outward Current Mouse Peritoneal Macrophage Pump Current Disulfonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aderem, A. A., Scott, W. A., and Cohn, Z. A., 1984, A selective defect in arachidonic acid release from macrophage membranes in high potassium media, J. Cell Biol. 99: 1235–1241.PubMedCrossRefGoogle Scholar
  2. Anderson, R. E., Woodbury, D. M., and Jee, W. S. S., 1986, Humoral and ionic regulation of osteoclast acidity, Calcif. Tissue Int. 39: 252–258.PubMedCrossRefGoogle Scholar
  3. Arkett, S. A., Dixon, S. J., and Sims, S. M., 1992, Substrate influences rat osteoclast morphology and expression of potassium conductances, J. Physiol. (London) 458: 633–653.Google Scholar
  4. Arnett, T. R., and Dempster, D. W., 1990, Perspectives: Protons and osteoclasts, J. Bone Miner. Res. 5: 1099–1103.PubMedCrossRefGoogle Scholar
  5. Baron, R., Neff, L., Louvard, D., and Courtoy, P. J., 1985, Cell-mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing lacunae and localization of a 100–kD lysosomal membrane protein at the osteoclast ruffled border, J. Cell Biol. 101: 2210–2222.PubMedCrossRefGoogle Scholar
  6. Bekker, P. J., and Gay, C. V., 1990, Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles, J. Bone Miner. Res. 5: 569–579.PubMedCrossRefGoogle Scholar
  7. Blair, H. C., and Schlesinger, P. H., 1990, Purification of a stilbene sensitive chloride channel and reconstitution of chloride conductivity into phospholipid vesicles, Biochem. Biophys. Res. Commun. 171: 920–925.PubMedCrossRefGoogle Scholar
  8. Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S., 1989, Osteoclastic bone resorption by a polarized vacuolar proton pump, Science 245: 855–857.PubMedCrossRefGoogle Scholar
  9. Blair, H. C., Teitelbaum, S. L., Tan, H.-L., Koziol, C. M., and Schlesinger, P. H., 1991, Passive chloride permeability charge coupled to 1+-ATPase of avian osteoclast ruffled membrane, Am. J. Physiol. 260: C1315–C1324.PubMedGoogle Scholar
  10. Blatz, A. L., and Magleby, K. L., 1983, Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle, Biophys. J. 43: 237–241.PubMedCrossRefGoogle Scholar
  11. Bowman, E. J., Siegers, A., and Altendorf, K., 1988, Bafilomycins: A class of inhibitor of membrane ATPases from microorganisms, animal cells, and plant cells, Proc. Natl. Acad. Sci. USA 85: 7972–7976.PubMedCrossRefGoogle Scholar
  12. Boyde, A., Ali, N. N., and Jones, S. J., 1984, Resorption of dentine by isolated osteoclasts in vitro, Br. Dent. J. 156: 216–220.PubMedCrossRefGoogle Scholar
  13. Bretag, A. H., 1987, Muscle chloride channels, Physiol. Rev. 67: 618–724.PubMedGoogle Scholar
  14. Buisman, H. P., Steinberg, T. H., Fischbarg, J., Silverstein, S. C., Vogelzang, S. A., Ince, C., Ypey, D. L., and Leijh, P. C. J., 1988, Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes, Proc. Natl. Acad. Sci. USA 85: 7988–7992.PubMedCrossRefGoogle Scholar
  15. Chambers, T. J., and Magnus, C. J., 1982, Calcitonin alters behaviour of isolated osteoclasts, J. Pathol. 136: 27–39.PubMedCrossRefGoogle Scholar
  16. Connor, J. A., and Stevens, C. F., 1971, Voltage clamp studies of a transient outward membrane current in gastropod neural somata, J Physiol. (London) 213: 21–30.Google Scholar
  17. Datta, H. K., Maclntyre, I., and Zaidi, M., 1989, The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts, Biosci. Rep. 9: 747–751.PubMedCrossRefGoogle Scholar
  18. Davidson, R. M., Tatakis, D. W., and Auerbach, A. L., 1990, Multiple forms of mechanosensitive ion channels in osteoblast-like cells, Pflügers Arch. 416: 646–651.PubMedCrossRefGoogle Scholar
  19. De Weer, P., Gadsby, D. C., and Rakowski, R. F., 1988, Voltage dependence of the Na–K pump, Annu. Rev. Physiol. 50: 225–241.PubMedCrossRefGoogle Scholar
  20. Dos Reis, G. A., and Oliveira-Castro, G. M., 1977, Electrophysiology of phagocytic membranes. 1. Potassium-dependent slow membrane hyperpolarizations in mice macrophages, Biochim. Biophys. Acta 469: 257–263.PubMedCrossRefGoogle Scholar
  21. Duncan, R., and Misler, S., 1989, Voltage-activated and stretch-activated Ba’+ conducting channels in an osteoblast-like tumor cell line (UMR 106), FEBS Lett. 251: 17–21.PubMedCrossRefGoogle Scholar
  22. Ferrier, J., Ward, A., Kanehisa, J., and Heersche, J. N. M., 1986, Electrophysiological responses of osteoclasts to hormones, J. Cell. Physiol. 128: 23–26.PubMedCrossRefGoogle Scholar
  23. Forgac, M., 1989, Structure and function of vacuolar class of ATP-driven proton pumps, Physiol. Rev. 69: 765–796.PubMedGoogle Scholar
  24. Gallin, E. K., 1981, Voltage clamp studies in macrophages from mouse spleen cultures, Science 214: 458–460.PubMedCrossRefGoogle Scholar
  25. Gallin, E. K., 1982, Electrophysiological properties of macrophages and macrophage-like cells, in Phagocytosis—Past and Future ( M. L. Karnovsky and L. Bolis, eds.), pp. 29–45, Academic Press, Toronto.Google Scholar
  26. Gallin, E. K., 1984a, Electrophysiological properties of macrophages, Fed. Proc., Fed. Am. Soc. Exp. Biol. 43: 2385–2389.Google Scholar
  27. Gallin, E. K., 1984b, Calcium-and voltage-activated potassium channels in human macrophages, Biophys. J. 46: 821–825.PubMedCrossRefGoogle Scholar
  28. Gallin, E. K., 1986, Ionic channels in leukocytes, J. Leukocyte Biol. 39: 241–254.PubMedGoogle Scholar
  29. Gallin, E. K., 1989, Evidence for a Ca-activated inwardly rectifying K channel in human macrophages, Am. J. Physiol. 257: C77–C85.PubMedGoogle Scholar
  30. Gallin, E. K., 1991, Ion channels in leukocytes, Physiol. Rev. 71: 775–811.PubMedGoogle Scholar
  31. Gallin, E. K., and Livengood, D. R., 1980, Nonlinear current–voltage relationships in cultured macrophages, J. Cell Biol. 85: 160–165.PubMedCrossRefGoogle Scholar
  32. Gallin, E. K., and Livengood, D. R., 1983, Demonstration of an electrogenic Na+-K+ pump in mouse spleen macrophages, Am. J. Physiol. 245: C184–C188.PubMedGoogle Scholar
  33. Gallin, E. K., and McKinney, L. C., 1988a, Patch-clamp studies in human macrophages: Single-channel and whole-cell characterization of two K+ conductances, J. Membr. Biol. 103: 55–66.PubMedCrossRefGoogle Scholar
  34. Gallin, E. K., and McKinney, L. C., 1988b, Potassium conductances in macrophages, in Cell Physiology of Blood ( R. B. Gunn and J. C. Parker, eds.), pp. 315–332, Rockefeller University Press, New York.Google Scholar
  35. Gallin, E. K., and McKinney, L. C., 1990, Monovalent ion transport and membrane potential changes during activation in phagocytic leukocytes, in Current Topics in Membranes and Transport, Vol. 35 ( S. Grinstein and O. Rothstein, eds.), pp. 127–152, Academic Press, Toronto.Google Scholar
  36. Gallin, E. K., Wiederhold, M. L., Lipsky, P. E., and Rosenthal, A. S., 1975, Spontaneous and induced membrane hyperpolarizations in macrophages, J. Cell. Physiol. 86: 653–662.PubMedCrossRefGoogle Scholar
  37. Greger, R., and Schlatter, E., 1989, Epithelial chloride channels, in Epithelial Secretion of Water and Electrolytes ( J. A. Yound and P. Y. D. Wong, eds.), Springer-Verlag, New York.Google Scholar
  38. Hagiwara, S., and Jaffe, L. A., 1979, Electrical properties of egg cell membranes, Annu. Rev. Biophys. Bioeng. 8: 385–416.PubMedCrossRefGoogle Scholar
  39. Hall, B. K., 1991, Bone, Volume 2: The Osteoclast, CRC Press, Boca Raton, Fla.Google Scholar
  40. Hall, T. J., and Chambers, T. J., 1989, Optimal bone resorption by isolated rat osteoclasts requires chloride bicarbonate exchange, Calcif. Tissue Int. 45: 378–380.PubMedCrossRefGoogle Scholar
  41. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches, Pflügers Arch. 391: 85–100.PubMedCrossRefGoogle Scholar
  42. Hattersley, G., and Chambers, T. J., 1989, Generation of osteoclastic function in mouse bone marrow cultures: Multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation, Endocrinology 124: 1689–1696.PubMedCrossRefGoogle Scholar
  43. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Mass.Google Scholar
  44. Ince, C., Thio, B., van Duijn, B., van Dissel, J. T., Ypey, D. L., and Leijh, P. C. J., 1987, Intracellular K+, Na+ and Cl-concentrations and membrane potential in human monocytes, Biochim. Biophys. Acta 905: 195–204.PubMedCrossRefGoogle Scholar
  45. Ince, C., Coremans, J. M. C. C., Ypey, D. L., Leijh, P. C. J., Verveen, A. A., and van Furth, R., 1988, Phagocytosis by human macrophages is accompanied by changes in ionic channel currents, J. Cell Biol. 106: 1873–1878.PubMedCrossRefGoogle Scholar
  46. Kakuta, Y., Okayama, H., Aikawa, T., Kanno, T., Ohyama, T., Sasaki, H., Kaito, T., and Takishima, T., 1988, K channels of human alveolar macrophages, J. Allergy Clin. Immunol. 81:460–468..Google Scholar
  47. Kelly, M. E. M., Arkett, S. A., Dixon, S. J., and Sims, S. M., 1991, Potassium and anion currents in rabbit osteoclasts, Biophys. J. 59: 461A (Abstract).Google Scholar
  48. Kelly, M. E. M., Dixon, S. J., and Sims, S. M., 1992, Inwardly rectifying potassium current in rabbit osteoclasts: A whole-cell and single-channel study, J. Membr. Biol. 126: 171–181.PubMedGoogle Scholar
  49. Kitagawa, S., and Johnston, R. B. Jr., 1985, Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages, J. Immunol. 135: 3417–3423.PubMedGoogle Scholar
  50. Klein-Nulend, J., and Raisz, L. G., 1989, Effects of two inhibitors of anion transport on bone resorption in organ culture, Endocrinology 125: 1019–1024.PubMedCrossRefGoogle Scholar
  51. Kolb, H. A., and Ubl, J., 1987, Activation of anion channels by zymosan particles in membranes of peritoneal macrophages, Biochim. Biophys. Acta 899: 239–246.PubMedCrossRefGoogle Scholar
  52. Korn, S. J., Marty, A., Connor, J. A., and Horn, R., 1991, Perforated patch recording, Methods Neurosci. 4: 364–373.Google Scholar
  53. Malgaroli, A., Meldolesi, J., Zambonin Zallone, A., and Teti, A., 1989, Control of cytosolic free calcium in rat and chicken osteoclasts, J. Biol. Chem. 264: 14342–14347.PubMedGoogle Scholar
  54. Marty, A., 1989, The physiological role of calcium-dependent channels, Trends Neurosci. 12: 420–424.PubMedCrossRefGoogle Scholar
  55. McCann, F. V., Cole, J. J., Guyre, P. M., and Russel, J. A. G., 1983, Action potentials in macrophages derived from human monocytes, Science 219: 991–993.PubMedCrossRefGoogle Scholar
  56. Mears, D. C., 1971, Effects of parathyroid hormone and thyrocalcitonin on the membrane potential of osteoclasts, Endocrinology 88: 1021–1028.PubMedCrossRefGoogle Scholar
  57. Miyauchi, A., Hruska, K. A., Greenfield, E., Duncan, R., Alvarez, J., Barattolo, R., Colucci, S., ZamboninZallone, A., Teitelbaum, S. L., and Teti, A., 1990, Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption, J. Cell Biol. 111: 2543–2552.PubMedCrossRefGoogle Scholar
  58. Nakao, M., and Gadsby, D. C., 1986, Voltage dependence of Na translocation by the Na+/K+ pump, Nature (London) 323: 628–630.CrossRefGoogle Scholar
  59. Nelson, D. J., Jow, B., and Jow, F., 1990a, Whole-cell currents in macrophages: I. Human monocyte-derived macrophages, J. Membr. Biol. 117: 29–44.PubMedCrossRefGoogle Scholar
  60. Nelson, D. J., Jow, B., and Popovich, K. J., 1990b, Whole-cell currents in macrophages: II. Alveolar macrophages, J. Membr. Biol. 117: 45–55.PubMedCrossRefGoogle Scholar
  61. Partridge, L. D., and Swandulla, D., 1988, Calcium-activated non-specific cation channels, Trends Neurosci. 11: 69–72.PubMedCrossRefGoogle Scholar
  62. Randriamampita, C., and Trautmann, A., 1987, Ionic channels in murine macrophages, J. Cell Biol. 105: 761–769.PubMedCrossRefGoogle Scholar
  63. Randriamampita, C., and Trautmann, A., 1989, Biphasic increase in intracellular calcium induced by platelet-activating factor in macrophages, FEBS Lett. 249: 199–206.PubMedCrossRefGoogle Scholar
  64. Ravesloot, J. H., 1991, Ion channels in bone cells, Ph.D. thesis, The University of Leiden, Leiden, The Netherlands.Google Scholar
  65. Ravesloot, J. H., Ypey, D. L., Nijweide, P. J., Buisman, H. P., Weidema, F., and Vrijheid-Lammers, T., 1989a, Three voltage activated K+ conductances and a by extracellular ATP activated conductance in freshly isolated embryonic chick osteoclasts, J. Bone Miner. Res. 4 (Suppl. 1): S200 (Abstract).Google Scholar
  66. Ravesloot, J. H., Ypey, D. L., Vrijheid-Lammers, T., and Nijweide, P. J., 1989b, Voltage-activated K+ conductances in freshly isolated embryonic chicken osteoclasts, Proc. Natl. Acad. Sci. USA 86: 6821–6825.PubMedCrossRefGoogle Scholar
  67. Riches, D. W. H., Channon, J. Y., Leslie, C. C., and Henson, P. M., 1988, Receptor-mediated signal transduction in mononuclear phagocytes, Prog. Allergy 42: 65–112.PubMedGoogle Scholar
  68. Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25: 729–749.PubMedCrossRefGoogle Scholar
  69. Sakmann, B., and Trube, G., 1984, Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart, J. Physiol. (London) 347: 641–657.Google Scholar
  70. Schoppa, N. A., Su, Y., Baron, R., and Boulpaep, E. L., 1990, Identification of single ion channels in neonatal rat osteoclasts, J. Bone Mineral Res. 5 (Suppl. 2): S204 (Abstract).Google Scholar
  71. Schwarze, W., and Kolb, H. A., 1984, Voltage dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes, Pflügers Arch. 402: 281–291.PubMedCrossRefGoogle Scholar
  72. Sims, S. M., and Dixon, S. J., 1989, Inwardly rectifying K+ current in osteoclasts, Am. J. Physiol. 256: C1277–C1282.PubMedGoogle Scholar
  73. Sims, S. M., Kelly, M. E. M., and Dixon, S. J., 1991, K’ and Cl-currents in freshly isolated rat osteoclasts, Pflügers Arch. 419: 358–370.PubMedCrossRefGoogle Scholar
  74. Sims, S. M., Kelly, M. E. M., Arkett, S. A., and Dixon, S. J., 1992, Electrophysiology of osteoclasts, in Biology and Physiology of the Osteoclast ( B. R. Rifkin and C. V. Gay, eds.), CRC Press, Boca Raton, Fla. pp. 223–244.Google Scholar
  75. Standen, N. B., and Stanfield, P. R., 1978, A potential-and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions, J. Physiol. (London) 280: 169–191.Google Scholar
  76. Sundquist, K., Lakkakorpi, P., Wallmark, B., and Väänänen, K., 1990, Inhibition of osteoclast proton transport by bafilomycin A, abolishes bone resorption, Biochem. Biophys. Res. Commun. 168: 309–313.PubMedCrossRefGoogle Scholar
  77. Teti, A., Blair, H. C., Teitelbaum, S. L., Kahn, A. J., Koziol, C., Konsek, J., Zambonin-Zallone, A., and Schlesinger, P. H., 1989, Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts, J. Clin. Invest. 83: 227–233.PubMedCrossRefGoogle Scholar
  78. Väänänen, H. K., Karhukorpi, E.-K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., and Lakkakorpi, P., 1990, Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled borders of osteoclasts, J. Cell Biol. 111: 1305–1311.PubMedCrossRefGoogle Scholar
  79. Vaes, G., 1988, Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts, Clin. Orthop. Rel. Res. 231: 239–271.Google Scholar
  80. Wood, D. A., Hapak, L. K., Sims, S. M., and Dixon, S. J., 1991, Direct effects of platelet-activating factor on isolated rat osteoclasts: Rapid elevation of intracellular free calcium and transient retraction of pseudopode, J. Biol. Chem. 266: 15369–15376.PubMedGoogle Scholar
  81. Young, J. D.-E., Unkeless, J. C., Kaback, H. R., and Cohn, Z. A., 1983a, Mouse macrophage Fc receptor for IgG gamma 2b/gamma 1 in artificial and plasma membrane vesicle functions as a ligand-dependent ionophore, Proc. Natl. Acad. Sci. USA 80: 1636–1640.PubMedCrossRefGoogle Scholar
  82. Young, J. D.-E., Unkeless, J. C., Young, T. M., Mauro, A., and Cohn, Z. A., 1983b, Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel, Nature (London) 306: 186–189.Google Scholar
  83. Ypey, D. L., and Clapham, D. E., 1984, Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages, Proc. Natl. Acad. Sci. USA 81: 3083–3087.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • S. Jeffrey Dixon
    • 1
  • Stuart A. Arkett
    • 2
  • Stephen M. Sims
    • 2
  1. 1.Division of Oral Biology and Department of Physiology, Faculty of DentistryThe University of Western OntarioLondonCanada
  2. 2.Department of Physiology, Faculty of DentistryThe University of Western OntarioLondonCanada

Personalised recommendations