Matrix Receptors of Myeloid Cells

  • Eric J. Brown
  • Frederik P. Lindberg
Part of the Blood Cell Biochemistry book series (BLBI, volume 5)


In the past several years, there has been a considerable increase in information about the mechanisms involved in cell adhesions, both to other cells and to the extracellular matrix in which these cells exist. The increase in understanding has evolved largely from a more detailed knowledge of the structure of many of the receptors for extracellular matrix components and of their ligands. These advances have been summarized in several recent reviews (Ruoslahti, 1991; Albelda and Buck, 1990; Burridge et al., 1990). This information has led, in turn, to a deeper appreciation of the impact of cell—cell adhesion and cell—matrix adhesion on cell phenotype during development, normal homeostasis, metastasis, tissue repair, and inflammation. Myeloid cells present a particularly interesting set of problems in this regard. During the normal maturation of myeloid cells, they reside in the bone marrow, in an environment containing many extracellular matrix molecules and crowded with neighboring cells, in which adhesive phenomena play an important part in cell development. With maturation, these cells then move into the bloodstream, where significant contact with other cells is minimal and in which, under normal circumstances, there is no exposure to extracellular matrix. However, a key role for human monocytes is to replenish the supply of tissue macrophages. Thus, these cells move back into an area rich in extracellular matrix ligands. Another essential function of both neutrophils and monocytes is to move to areas of infection or inflammation to provide essential host defense and tissue repair functions. In these processes of emigration from the bloodstream to extravascular tissues, recognition of both endothelium and extracellular matrix has a critical role. Thus, leukocytes must possess mechanisms for precise modulation of expression and function of their adhesion receptors during development, while in the circulation, and during emigration into solid tissues. These mechanisms have been the subject of investigation in many laboratories and are the focus of this chapter.


Myeloid Cell Human Monocyte Human Neutrophil Complement Receptor Integrin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aderem, A. A., Wright, S. D., Silverstein, S. C., and Cohn, Z. A., 1985, Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages, J. Exp. Med. 161: 617–622.PubMedCrossRefGoogle Scholar
  2. Albelda, S. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4: 2868–2880.PubMedGoogle Scholar
  3. Altieri, D. C., and Edgington, T. S., 1988, The saturable high affinity association of factor X to ADP-stimu- lated monocytes defines a novel function of the Mac-1 receptor, J. Biol. Chem. 263: 7007–7015.PubMedGoogle Scholar
  4. Altieri, D. C., Bader, R., Mannucci, P. M., and Edgington, T. S., 1988, Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen, J. Cell Biol. 107: 1893–1900.PubMedCrossRefGoogle Scholar
  5. Altieri, D. C., Agbanyo, F. R., Plescia, J., Ginsberg, M. H., Edgington, T. S., and Plow, E. F., 1990, A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD1 1 b/CD18), J. Biol. Chem. 265: 12119–12122.PubMedGoogle Scholar
  6. Arnaout, M. A., Todd, R. F., III, Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R., 1983, Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte granulocyte membrane glycoprotein (Mo 1), J. Clin. Invest. 72: 171–179.PubMedCrossRefGoogle Scholar
  7. Arnaout, M. A., Dana, N., Gupta, S. K., Tenen, D. G., and Fathallah, D. M., 1990, Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency, J. Clin. Invest. 85: 977–981.PubMedCrossRefGoogle Scholar
  8. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., 1990, CD44 is the principal cell surface receptor for hyaluronate, Cell 61: 1303–1313.PubMedCrossRefGoogle Scholar
  9. Bainton, D. F., Miller, L. J., Kishimoto, T. K., and Springer, T. A., 1987, Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils, J. Exp. Med. 166: 1641–1653.PubMedCrossRefGoogle Scholar
  10. Ballard, L. L., Brown, E. J., and Holers, V. M., 1991, Expression of the fibronectin receptor VLA-5 is regulated during human B cell differentiation and activation, Clin. Exp. Immunol. 84: 336–346.PubMedCrossRefGoogle Scholar
  11. Berger, M., O’Shea, J. J., Cross, A. S., Folks, T. M., Chused, T. M., Brown, E. J., and Frank, M. M., 1984, Human neutrophils increase expression of C3bi as well as C3b receptors upon activation, J. Clin. Invest. 74: 1566–1571.PubMedCrossRefGoogle Scholar
  12. Bermudez, L. E., Young, L. S., and Enkel, H., 1991, Interaction of Mycobacterium avium complex with human macrophages: Roles of membrane receptors and serum proteins, Infect. Immun. 59: 1697–1702.PubMedGoogle Scholar
  13. Bernardi, P., Patel, V. P., and Lodish, H. F., 1987, Lymphoid precursor cells adhere to two different sites on fibronectin, J. Cell Biol. 105: 489–498.PubMedCrossRefGoogle Scholar
  14. Bevilacqua, M. P., Amrani, D. L., Mosesson, M. W., and Bianco, C., 1981, Receptors for cold-insoluble globulin (plasma fibronectin) on human monocytes, J. Exp. Med. 153: 42–60.PubMedCrossRefGoogle Scholar
  15. Blystone, S. D., and Kaplan, J. E., 1992, Isolation of an amino-terminal fibronectin binding protein on human U937 cells and rat peritoneal macrophages, J. Biol. Chem. 267: 3968–3975.PubMedGoogle Scholar
  16. Blystone, S. D., Weston, L. K., and Kaplan, J. E., 1991, Fibronectin dependent macrophage fibrin binding, Blood 78: 2900–2907.PubMedGoogle Scholar
  17. Bohnsack, J. F., Kleinman, H., Takahashi, T., O’Shea, J. J., and Brown, E. J., 1985, Connective tissue proteins and phagocytic cell function: Laminin enhances complement and Fc-mediated phagocytosis by cultured human macrophages, J. Exp. Med. 161: 912–923.PubMedCrossRefGoogle Scholar
  18. Bohnsack, J. F., Takahashi, T., and Brown, E. J., 1986, The cell binding domain of human fibronectin is necessary but inefficient for enhancement of CR1 mediated phagocytosis by human monocyte-derived macrophages, J. Immunol. 136: 3793–3798.PubMedGoogle Scholar
  19. Bohnsack, J. F., Akiyama, S. K., Damsky, C. H., Knape, W. A., and Zimmerman, G. A., 1990, Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin, J. Exp. Med. 171: 1221–1237.PubMedCrossRefGoogle Scholar
  20. Bray, P. F., Rosa, J.-P., Johnston, G. I., Shiu, D. T., Cook, R. G., Lau, C., Kan, Y. W., McEver, R. P., and Shuman, M. A., 1987, Platelet glycoprotein IIb: Chromosomal localization and tissue expression, J. Clin. Invest. 80: 1812–1817.PubMedCrossRefGoogle Scholar
  21. Brown, E. J., 1991, Complement receptors and phagocytosis, Curr. Opin. Immunol. 3: 76–82.PubMedCrossRefGoogle Scholar
  22. Brown, E. J., and Goodwin, J. L., 1988, Fibronectin receptors of phagocytes: Characterization of the Arg-Gly-Asp binding proteins of human monocytes and polymorphonuclear leukocytes, J. Exp. Med. 167: 777–793.PubMedCrossRefGoogle Scholar
  23. Brown, E. J., Bohnsack, J. F., and Gresham, H. D., 1988, Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen, J. Clin. Invest. 81: 365–375.PubMedCrossRefGoogle Scholar
  24. Brown, E. J., Hooper, L., Ho, T., and Gresham, H., 1990, Integrin-associated protein: A 50-kD plasma membrane antigen physically and functionally associated with integrins, J Cell Biol. 111: 2785–2794.PubMedCrossRefGoogle Scholar
  25. Burridge, K., Nuckolls, G., Otey, C., Pavalko, F., Simon, K., and Turner, C., 1990, Actin-membrane interaction in focal adhesions, Cell Differ. Dey. 32: 337–342.CrossRefGoogle Scholar
  26. Butcher, E. C., 1991, Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity, Cell 67: 1033–1036.PubMedCrossRefGoogle Scholar
  27. Buyon, J. P., Abramson, S. N., Philips, M. R., Slade, S. G., Ross, G. D., Weissmann, G., and Winchester, R. J., 1988, Dissociation between increased surface expression of gp 165/95 and homotypic neutrophil aggregation, J. Immunol. 140: 3156–3160.PubMedGoogle Scholar
  28. Buyon, J. P., Slade, S. G., Reibman, J., Abramson, S. B., Philips, M. R., Weissmann, G., and Winchester, R., 1990, Constitutive and induced phosphorylation of the alpha-and beta-chains of the CD 11 /CD 18 leukocyte integrin family. Relationship to adhesion-dependent functions, J. Immunol. 144: 191–197.PubMedGoogle Scholar
  29. Carlos, T., Kovach, N., Schwartz, B., Rosa, M., Newman, B., Wayner, E., Benjamin, C., Osborn, L., Lobb, R., and Harlan, J., 1991, Human monocytes bind to two cytokine-induced adhesive ligands on cultured human endothelial cells: Endothelial-leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1, Blood 77: 2266–2271.PubMedGoogle Scholar
  30. Carreno, M. P., Gresham, H. D., and Brown, E. J., 1991, Characterization of a novel integrin involved in regulation of phagocytosis, FASEB J. 5:A549(Abstr.).Google Scholar
  31. Carter, W. G., Kaur, P., Gil, S. G., Gahr, P. J., and Wayner, E. A., 1990, Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: Relation to hemidesmosomes, J. Cell Biol. 111: 3141–3154.PubMedCrossRefGoogle Scholar
  32. Carter, W. G., Ryan, M. C., and Gahr, P. J., 1991, Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes, Cell 65: 599–610.PubMedCrossRefGoogle Scholar
  33. Chatila, T. A., Geha, R. S., and Arnaout, M. A., 1989, Constitutive and stimulus-induced phosphorylation of CD] 1/CD18 leukocyte adhesion molecules, J. Cell Biol. 109: 3435–3444.PubMedCrossRefGoogle Scholar
  34. Corbi, A. L., Miller, L. J., O’Connor, K., Lee, A., Larson, R. S., and Springer, T. A., 1987, DNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein p150,95, EMBO J. 6: 4023–4028.PubMedGoogle Scholar
  35. Corbi, A. L., Kishimoto, T. K., Miller, L. J., and Springer, T. A., 1988, The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CDl lb) subunit: Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B, J. Biol. Chem. 263: 12403–12411.PubMedGoogle Scholar
  36. Dang, N. H., Torimoto, Y., Schlossman, S. F., and Morimoto, C., 1990, Human CD4 helper T cell activation: Functional involvement of two distinct collagen receptors, 1 F7 and VLA integrin family, J. Exp. Med. 172: 649–652.PubMedCrossRefGoogle Scholar
  37. Davis, L. S., Oppenheimer Marks, N., Bednarczyk, J. L., McIntyre, B. W., and Lipsky, P. E., 1990, Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules, J. Immunol. 145: 785–793.PubMedGoogle Scholar
  38. de Fougerolles, A. R., and Springer, T. A., 1992, Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes, J. Exp. Med. 175: 185–190.PubMedCrossRefGoogle Scholar
  39. Detmers, P. A., Wright, S. D., Olsen, E., Kimball, B., and Cohen, Z. A., 1987, Aggregation of complement receptors on human neutrophils in the absence of ligand, J. Cell Biol. 105: 1137–1145.PubMedCrossRefGoogle Scholar
  40. Devereux, J., Haeberli, P., and Smithies, O., 1984, A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12: 387–395.PubMedCrossRefGoogle Scholar
  41. Diamond, M. S., Staunton, D. E., de Fougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A., 1990, ICAM-1 (CD54): A counter-receptor for Mac-1 (CD1 lb/CD18), J. Cell Biol. 111: 3129–3139.PubMedCrossRefGoogle Scholar
  42. Diamond, M. S., Staunton, D. E., Marlin, S. D., and Springer, T. A., 1991, Binding of the integrin Mac-1 (CD1 lb/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation, Cell 65: 961–971.PubMedCrossRefGoogle Scholar
  43. Doerschuk, C. M., Winn, R. K., Coxson, H. O., and Harlan, J. M., 1990, CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits, J. Immunol. 144: 2327–2333.PubMedGoogle Scholar
  44. Doran, J. E., Mansberger, A. R., Edmondson, H. T., and Reese, A. C., 1981, Cold insoluble globulin and heparin interactions in phagocytosis by macrophage monolayers: Mechanism of heparin enhancement, J. Reticuloendothel. Soc. 29: 285–294.PubMedGoogle Scholar
  45. Dransfield, I., and Hogg, N., 1989, Regulated expression of Mgt+ binding epitope on leukocyte integrin alpha subunits, EMBO J. 8: 3759–3765.PubMedGoogle Scholar
  46. Dustin, M. L., and Springer, T. A., 1989, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature (London) 341: 619–624.CrossRefGoogle Scholar
  47. Dustin, M. L., and Springer, T. A., 1991, Role of lymphocyte adhesion receptors in transient interactions and cell locomotion, Annu. Rev. Immunol. 9: 27–66.PubMedCrossRefGoogle Scholar
  48. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A., 1986, Induction by IL-1 and interferon, tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1), J. Immunol. 137: 245–254.PubMedGoogle Scholar
  49. Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R., 1990, VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site, Cell 60: 577–584.PubMedCrossRefGoogle Scholar
  50. Figdor, C. G., to Velde, A. A., and de Vries, J. E., 1990, The role of LFA-1 and related antigens in adhesion-mediated functions of human monocytes, in Leukocyte Adhesion Molecules: Structure, Function, and Regulation ( T. A. Springer, D. C. Anderson, R. Rothlein, and A. S. Rosenthal, eds.), pp. 159–169, Springer-Verlag, New York.Google Scholar
  51. Freyer, D. R., Morganroth, M. L., and Todd, R. F., III, 1989, Surface Mo 1 (CD 11 b/CD 1 8) glycoprotein is up-modulated by neutrophils recruited to sites of inflammation in vivo, Inflammation 13: 495–505.PubMedCrossRefGoogle Scholar
  52. Furie, M. B., Tancinco, M. C. A., and Smith, C. W., 1991, Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD1lb/CD18 or intercellular adhesion molecule-1 inhibit chemoattractantstimulated neutrophil transendothelial migration in vitro, Blood 78: 2089–2097.PubMedGoogle Scholar
  53. Gahmberg, C. G., Nortamo, P., Kantor, C., Autero, M., Kotovuori, P., Hemiö, L., Salcedo, R., and Patarroyo, M., 1990, The pivotal role of the Leu-CAM and ICAM molecules in human leukocyte adhesion, Cell Differ. Dev. 32: 239–246.PubMedCrossRefGoogle Scholar
  54. Goldstein, L. A., Zhou, D. F. H., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C., 1989, A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins, Cell 56: 1063–1072.PubMedCrossRefGoogle Scholar
  55. Graham, I. L., Gresham, H. D., and Brown, E. J., 1989, An immobile subset of plasma membrane CD11b/CD18 (Mac-I) is involved in phagocytosis of targets recognized by multiple receptors, J. Immunol. 142: 2352–2358.PubMedGoogle Scholar
  56. Graham, I. L., Lefkowith, J. B., Anderson, D. C., and Brown, E. J., 1993, Immune complex-stimulated neutrophil LTB4 production is dependent on beta2 integrins, J. Cell Biol.,in press.Google Scholar
  57. Gresham, H. D., Adams, S. P., and Brown, E. J., 1992, Ligand binding specificity of the leukocyte response integrin expressed by human neutrophils, J. Biol. Chem. 267: 13895–13902.PubMedGoogle Scholar
  58. Gresham, H. D., Goodwin, J. L., Anderson, D. C., and Brown, E. J., 1989, A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis, J. Cell Biol. 108: 1935–1943.PubMedCrossRefGoogle Scholar
  59. Gresham, H. D., Graham, I. L., Anderson, D. C., and Brown, E. J., 1991, Leukocyte adhesion deficient (LAD) neutrophils fail to amplify phagocytic function in response to stimulation: Evidence for CD!1 b/CD 18-dependent and -independent mechanisms of phagocytosis, J. Clin. Invest. 88: 588–597.PubMedCrossRefGoogle Scholar
  60. Groux, H., Huet, S., Valentin, H., Pham, D., and Bernard, A., 1989, Suppressor effects and cyclic AMP accumulation by the CD29 molecule of CD4+ lymphocytes, Nature (London) 339: 152–154.CrossRefGoogle Scholar
  61. Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P., 1991, A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells, Cell 65: 13–24.PubMedCrossRefGoogle Scholar
  62. Hemler, M. E., 1990, VLA proteins in the integrin family: Structures, functions, and their role on leukocytes, Annu. Rev. Immunol. 8: 365–400.PubMedCrossRefGoogle Scholar
  63. Hemler, M. E., Jacobson, J. G., and Strominger, J. L., 1985, Biochemical characterization of VLA-1 and VLA-2. Cell surface heterodimers on activated T cells, J. Biol. Chem. 260: 15246–15252.PubMedGoogle Scholar
  64. Hemler, M. E., Huang, C., and Schwarz, L., 1987, The VLA protein family: Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit, J. Biol. Chem. 262: 3300–3309.PubMedGoogle Scholar
  65. Hemler, M. E., Elices, M. J., Parker, C., and Takada, Y., 1990, Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions, Immunol. Rev. 114: 45–65.PubMedCrossRefGoogle Scholar
  66. Hibbs, M. L., Jakes, S., Stacker, S. A., Wallace, R. W., and Springer, T. A., 1991, The cytoplasmic domain of the integrin lymphocyte function-associated antigen I ß subunit: Sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site, J. Exp. Med. 174: 1227–1238.PubMedCrossRefGoogle Scholar
  67. Hickstein, D. D., Howard, M., Meuller, L., Hickey, M. J., and Collins, S. J., 1988, Expression of the beta-subunit of the human leukocyte adherence receptor depends upon cell type and stage of differentiation, J. Immunol. 141: 4313–4317.PubMedGoogle Scholar
  68. Hickstein, D. D., Back, A. L., and Collins, S. J., 1989, Regulation of expression of the CD1lb and CD18 subunits of neutrophil adherence receptor during human myeloid differentiation, J. Biol. Chem. 264: 21812–21817.PubMedGoogle Scholar
  69. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y., 1984, Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, Biochemistry 23: 5036–5041.PubMedCrossRefGoogle Scholar
  70. Horazdovsky, B. F., and Hogg, R. W., 1989, Genetic reconstitution of the high-affinity L-arabinose transport system, J. Bacteriol. 171: 3053–3059.PubMedGoogle Scholar
  71. Huizinga, T. W. J., Van der Schoot, C. E., Jost, C., Klaassen, R., Kleijer, M., van dem Borne, A. E. G. K., Roos, D., and Tetteroo, P. A. T., 1988, The PI-linked receptor RcRIII is released on stimulation of neutrophils, Nature (London) 333: 667–669.CrossRefGoogle Scholar
  72. Hynes, R. 0., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–554.Google Scholar
  73. Ingber, D., 1991, Extracellular matrix and cell shape: Potential control points for inhibition of angiogenesis, J. Cell. Biochem. 47: 236–241.PubMedCrossRefGoogle Scholar
  74. Ingber, D. E., Prusty, D., Frangioni, J. V., Cragoe, E. J., Jr., Lechene, C., and Schwartz, M. A., 1990, Control of intracellular pH and growth by fibronectin in capillary endothelial cells, J. Cell Biol. 110: 1803–1811.PubMedCrossRefGoogle Scholar
  75. Jaconi, M. E. E., Theler, J. M., Schlegel, W., Appel, R. D., Wright, S. D., and Lew, P. D., 1990, Fluctuations of cytosolic free Ca+2 in human neutrophils: Initiation by adherence receptors of the integrin family, J. Cell Biol. 111: 468a (Abstr.).Google Scholar
  76. Jaeschke, H., Farhood, A., and Smith, C. W., 1991, Neutrophil-induced liver cell injury in endotoxin shock is a CDI lb/CD 18-dependent mechanism, Am. J. Physiol. Gastrointest. Liver Physiol. 261: G1051 - G1056.Google Scholar
  77. Jones, D. H., Schmalstieg, F. C., Hawkins, H. K., Burr, B. L., Rudloff, H. E., Krater, S., Smith, C. W., and Anderson, D. C.,1990, Characterization of a new mobilizable Mac-1 (CD11b/CD18) pool that co-localizes with gelatinase in human neutrophils, in Leukocvte Adhesion Molecules: Structure, Function, and Regulation (T. A. Springer, D. C. Anderson, A. S. Rosenthal, and R. Rothlein, eds.), pp. 106–124, Springer-Verlag, New York.Google Scholar
  78. Jutila, M. A., Berg, E. L., Kishimoto, T. K., Picker, L. J., Bargatze, R. F., Bishop, D. K., Orosz, C. G., Wu, N. W., and Butcher, E. C., 1989, Inflammation-induced endothelial cell adhesion to lymphocytes, neutrophils, and monocytes, Transplantation 48: 727–731.Google Scholar
  79. Kaslovsky, R. A., Horgan, M. J., Lum, H., McCandless, B. K., Gilboa, N., Wright, S. D., and Malik, A. B., 1990, Pulmonary edema induced by phagocytosing neutrophils. Protective effect of monoclonal antibody against phagocyte CD18 integrin, Circ. Res. 67: 795–802.PubMedCrossRefGoogle Scholar
  80. Katz, A. M., Rosenthal, D., and Sauder, D. N., 1991, Cell adhesion molecules. Structure, function, and implication in a variety of cutaneous and other pathologic conditions, Int. J. Dermatol. 30: 153–160.PubMedCrossRefGoogle Scholar
  81. Kehrli, M. E., Jr., Schmalstieg, F. C., Anderson, D. C., Van der Maaten, M. J., Hughes, B. J., Ackermann, M. R., Wilhelmsen, C. L., Brown, G. B., Stevens, M. G., and Whetstone, C. A., 1990, Molecular definition of the bovine granulocytopathy syndrome: Identification of deficiency of the Mac-1 (CD1 lb/CD18) glycoprotein, Am. J. Vet. Res. 51: 1826–1836.PubMedGoogle Scholar
  82. Keizer, G. D., to Velde, A. A., Schwarting, R., Figdor, C. G., and de Vries, J. E., 1987, Role of p150,95 in adhesion, migration, chemotaxis, and phagocytosis of human monocytes, Eur. J. Immunol. 17: 1317–1322.PubMedCrossRefGoogle Scholar
  83. Kirchhofer, D., Languino, L. R., Ruoslahti, E., and Pierschbacher, M. D., 1990, Integrins from different cell types show different binding specificities, J. Biol. Chem. 265: 615–618.PubMedGoogle Scholar
  84. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A., 1987a, Heterogeneous mutations in the ß subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency, Cell 50: 192–202.CrossRefGoogle Scholar
  85. Kishimoto, T. K., O’Connor, K., Lee, A., Roberts, T. M., and Springer, T. A., 1987b, Cloning of the ß subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family, Cell 48: 681–690.PubMedCrossRefGoogle Scholar
  86. Kishimoto, T. K., Jutila, M. A., Berg, E. L., and Butcher, E. C., 1989a, Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors, Science 245: 1238–1241.PubMedCrossRefGoogle Scholar
  87. Kishimoto, T. K., O’Connor, K., and Springer, T. A., 1989b, Leukocyte adhesion deficiency: Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype, J. Biol. Chem. 264: 3588–3595.PubMedGoogle Scholar
  88. Krissansen, G. W., Elliott, M. J., Lucas, C. M., Stomski, F. C., Berndt, M. C., Cheresh, D. A., Lopez, A. F., and Burns, G. F., 1990, Identification of a novel integrin ß subunit expressed on cultured monocytes (macrophages): Evidence that one a subunit can associate with multiple ß subunits, J. Biol. Chem. 265: 823–830.PubMedGoogle Scholar
  89. Kurzinger, K., Ho, M.-K., and Springer, T. A., 1982, Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing, Nature (London) 296: 668–670.CrossRefGoogle Scholar
  90. Larson, R. S., Corbi, A. L., Berman, L., and Springer, T., 1989, Primary structure of the leukocyte function-associated molecule-1 a subunit: An integrin with an embedded domain defining a protein superfamily, J. Cell. Biol. 108: 703–712.PubMedCrossRefGoogle Scholar
  91. Lasky, L. A., 1991, Lectin cell adhesion molecules (LEC-CAMS): A new family of cell adhesion proteins involved with inflammation, J. Cell. Biochem. 45: 139–146.PubMedCrossRefGoogle Scholar
  92. Lawrence, M. B., and Springer, T. A., 1991, Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins, Cell 65: 859–873.PubMedCrossRefGoogle Scholar
  93. Limper, A. H., Quade, B. J., LaChance, R. M., Birkenmeier, T. M., Rangwala, T. S., and McDonald, J. A., 1991, Cell surface molecules that bind fibronectin’s matrix assembly domain, J. Biol. Chem. 266: 9697–9702.PubMedGoogle Scholar
  94. Lo, S. K., Van Seventer, G. A., Levin, S. M., and Wright, S. D., 1989, Two leukocyte receptors (CD11a/ CD 18 and CD I 1 b/CD 18) mediate transient adhesion to endothelium by binding to different ligands, J. Immunol. 143: 3325–3329.PubMedGoogle Scholar
  95. Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Weitz, J. I., Detmers, P. A., Wright, S. D., and Silverstein, S. C., 1991, CD!1 c/CD 18 on neutrophils recognizes a domain at the N terminus of the Aa chain of fibrinogen, Proc. Natl. Acad. Sci. USA 88: 1044–1048.CrossRefGoogle Scholar
  96. Lotz, M. M., Burdsal, C. A., Erickson, H. P., and McClay, D. R., 1989, Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response, J. Cell Biol. 109: 1795–1805.PubMedCrossRefGoogle Scholar
  97. Makgoba, M. W., Sanders, M. E., Ginther Luce, G. E., Dustin, M. L., Springer, T. A., Clark, E. A., Mannoni, P., and Shaw, S., 1988, ICAM-1: A ligand for LFA-1-dependent adhesion of B, T and myeloid cells, Nature (London) 331: 86–88.CrossRefGoogle Scholar
  98. Marquette, D., Molnar, J., Yamada, K., Schlesinger, D., Darby, S., and van Alten, P., 1981, Phagocytosispromoting activity of avian plasma and fibroblastic cell surface fibronectins, Mol. Cell. Biochem. 36: 147–155.PubMedCrossRefGoogle Scholar
  99. Matsuyama, T., Yamada, A., Kay, J., Yamada, K M., Akiyama, S. K., Schlossman, S. F., and Morimoto, C., 1989, Activation of CD4 cells by fibronectin and anti-CD3 antibody: A synergistic effect mediated by the VLA-5 fibronectin receptor complex, J. Exp. Med. 170: 1133–1148.PubMedCrossRefGoogle Scholar
  100. Matsuzawa, H., Asoh, S., Kunai, K., Muraiso, K., Takasuga, A., and Ohta, T., 1989, Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon, J. Bacteriol. 171: 558–560.PubMedGoogle Scholar
  101. McGavin, M. J., Raucci, G., Gurusiddappa, S., and Höök, M., 1991, Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor, J. Biol. Chem. 266: 8343–8347.PubMedGoogle Scholar
  102. McKeown-Longo, P. J., and Mosher, D. F., 1985, Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts, J. Cell Biol. 100: 364–374.PubMedCrossRefGoogle Scholar
  103. Mecham, R. P., 199la, Receptors for laminin on mammalian cells, FASEB J. 5: 2538–2546.Google Scholar
  104. Mecham, R. P., 199 lb, Laminin receptors, Annu. Rev. Cell Biol. 7: 71–91.Google Scholar
  105. Miller, L. J., Bainton, D. F., Borregaard, N., and Springer, T. A., 1987, Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface, J. Clin. Invest. 80: 535–544.PubMedCrossRefGoogle Scholar
  106. Miyake, K., and Kincade, P. W., 1990, A new cell adhesion mechanism involving hyaluronate and CD44, Curr. Top. Microbiol. Immunol. 166: 87–90.PubMedCrossRefGoogle Scholar
  107. Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Auerbach, R., and Kincade, P. W., 1991a, A VCAMlike adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture, J. Cell Biol. 114: 557–565.PubMedCrossRefGoogle Scholar
  108. Miyake, K., Weissman, I. L., Greenberger, J. S., and Kincade, P. W., 1991 b, Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis, J. Exp. Med. 173: 599–607.Google Scholar
  109. Miyauchi, a., Alvarez, J., Greenfield, E. M., Teti, A., Grano, M., Colucci, S., Zambonin-Zallone, A., Ross, F. P., Teitelbaum, S. L., Cheresh, D., and Hruska, K. A., 1991, Recognition of osteopontin and related peptides by an ay/33 integrin stimulates immediate cell signals in osteoclasts, J. Biol. Chem. 266: 20369–20374.PubMedGoogle Scholar
  110. Morisaki, T., Goya, T., Toh, H., Nishihara, K., and Torisu, M., 1991, The anti Mac-1 monoclonal antibody inhibits neutrophil sequestration in lung and liver in a septic murine model, Clin. Immunol. Immunopathol. 61: 365–375.PubMedCrossRefGoogle Scholar
  111. Mosser, D. M., Springer, T. A., and Diamond, M. S., 1992, Leishmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18), J Cell Biol. 116: 511–520.PubMedCrossRefGoogle Scholar
  112. Myones, B. L., Dalzell, J. G., Hogg, N., and Ross, G. D., 1988, Neutrophil and monocyte cell surface p150,95 has iC3b receptor (CR4) activity, J. Clin. Invest. 82: 640–651.PubMedCrossRefGoogle Scholar
  113. Nathan, C., and Sanchez, E., 1990, Tumor necrosis factor and CD11/CD18 (ß2) integrins act synergistically to lower cAMP in human neutrophils, J. Cell Biol. 111: 2171–2181.PubMedCrossRefGoogle Scholar
  114. Nathan, C., Srimal, S., Farber, C., Sanchez, E., Kabbash, L., Asch, A., Gailit, J., and Wright, S. D., 1989, Cytokine-induced respiratory burst of human neutrophils: Dependence on extracellular matrix pro-tens and CD11/CD18 integrins, J. Cell. Biol. 109: 1341–1349.PubMedCrossRefGoogle Scholar
  115. Ng-Sikorski, J., Andersson, R., Patarroyo, M., and Andersson, T., 1991, Calcium signaling capacity of the CD’ lb/CD18 integrin on human neutrophils, Exp. Cell Res. 195: 504–508.PubMedCrossRefGoogle Scholar
  116. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M., and Numa, S., 1986, Expression of functional sodium channels from cloned eDNA, Nature (London) 322: 826–828.CrossRefGoogle Scholar
  117. Nojima, Y., Humphries, M. J., Mould, A. P., Komoriya, A., Yamada, K. M., Schlossman, S. F., and Morimoto, C., 1990, VLA-4 mediates CD3-dependent CD4+ T cell activation via the CSl alternatively spliced domain of fibronectin, J. Exp. Med. 172: 1185–1192.PubMedCrossRefGoogle Scholar
  118. Numa, S., and Noda, M., 1986, Molecular structure of sodium channels, Ann. N. Y. Acad. Sei. 479: 338–355.CrossRefGoogle Scholar
  119. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., and Lobb, R., 1989, Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes, Cell 59: 1203–1211.PubMedCrossRefGoogle Scholar
  120. O’Shea, J. J., Brown, E. J., Seligmann, B. E., Metcalf, J. E., Frank, M. M., and Gatlin, J. I., 1985, Evidence for distinct intracellular pools for CR1 and CR3 in human neutrophils, J. Immunol. 134: 2580–2587.PubMedGoogle Scholar
  121. Patel, V. P., and Lodish, H. F., 1984, Loss of adhesion of murine erythroleukemia cells to fibronectin during erythroid differentiation, Science 224: 996–998.PubMedCrossRefGoogle Scholar
  122. Patel, V. P., and Lodish, H. F., 1986, The fibronectin receptor on mammalian erythroid precursor cells: Characterization and developmental regulation, J. Cell Biol. 102: 449–456.PubMedCrossRefGoogle Scholar
  123. Patel, V. P., Ciechanover, A., Platt, O., and Lodish, H. F., 1985, Mammalian reticulocytes lose adhesion to fibronectin during maturation to erythrocytes, Proc. Natl. Acad. Sci. USA 82: 440–444.PubMedCrossRefGoogle Scholar
  124. Phillips, D. R., Charo, I. F., and Scarborough, R. M., 1991, GPIIb-IIIa: The responsive integrin, Cell 65: 359–362.PubMedCrossRefGoogle Scholar
  125. Picker, L. J., Terstappen, L. W. M. M., Ron, L. S., Streeter, P. R., Stein, H., and Butcher, E. C., 1990, Differential expression of homing-associated adhesion molecules by T cell subsets in man, J. Immunol. 145: 3247–3255.PubMedGoogle Scholar
  126. Pike, M. C., Wicha, M. S., Yoon, P., Mayo, L., and Boxer, L. A., 1989, Laminin promotes the oxidative burst in human neutrophils via increased chemoattractant receptor expression, J. Immunol. 142: 2004–2011.PubMedGoogle Scholar
  127. Pommier, C. G., Inada, S., Fries, L. F., Takahashi, T., Frank, M. M., and Brown, E. J., 1983, Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes, J. Exp. Med. 157: 1844–1854.PubMedCrossRefGoogle Scholar
  128. Pommier, C. G., O’Shea, J. J., Chused, T., Yancey, K., Frank, M. M., Takahashi, T., and Brown, E. J., 1984, Studies of the fibronectin receptors of human peripheral blood leukocytes: Morphologic and functional characterization, J. Exp. Med. 159: 137–151.PubMedCrossRefGoogle Scholar
  129. Remold-O’Donnell, E., and Savage, B., 1988, Characterization of macrophage adhesion molecule, Biochemistry 27: 37–41.PubMedCrossRefGoogle Scholar
  130. Rosales, C., and Brown, E. J., 1991, Two mechanisms for IgG Fc-receptor-mediated phagocytosis by human neutrophils, J. Immunol. 146: 3937–3944.PubMedGoogle Scholar
  131. Rosales, C., and Brown, E. J., 1992, Signal transduction by neutrophil IgG Fc receptors: Dissociation of [Cal rise from IP3, J. Biol. Chem. 267: 5265–5271.PubMedGoogle Scholar
  132. Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87: 1–5.PubMedCrossRefGoogle Scholar
  133. Russell, D. G., and Wright, S. D., 1988, Complement receptor type 3 (CR3) binds to an Arg-Gly-Aspcontaining region of the major surface glycoprotein, gp63, of Leishmania promastigotes, J. Exp. Med. 168: 279–292.PubMedCrossRefGoogle Scholar
  134. Saunders, S., Jalkanen, M., O’Farrell, S., and Bernfield, M., 1989, Molecular cloning of syndecan, an integral membrane proteoglycan, J. Cell Biol. 108: 1547–1556.PubMedCrossRefGoogle Scholar
  135. Savill, J., Dransfield, I., Hogg, N., and Haslett, C., 1990, Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis, Nature (London) 343: 170–173.CrossRefGoogle Scholar
  136. Schlesinger, L. S., Bellinger-Kawahara, C. G., Payne, N. R., and Horwitz, M. A., 1990, Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol. 144: 2771–2780.PubMedGoogle Scholar
  137. Schlesinger, L. S., and Horwitz, M. A., 1991, Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD 1 1 b/CD18), and CR4 (CD!1 c/CD 18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium, J. Immunol. 147: 1983–1994.PubMedGoogle Scholar
  138. Schwartz, B. R., Wayner, E. A., Carlos, T. M., Ochs, H. D., and Harlan, J. M., 1990, Identification of surface proteins mediating adherence of CD11/CD18-deficient lymphoblastoid cells to cultured human endothelium, J. Clin. Invest. 85: 2019–2022.PubMedCrossRefGoogle Scholar
  139. Schwartz, M. A., Ingber, D. E., Lawrence, M., Springer, T. A., and Lechene, C., 1991, Multiple integrins share the ability to induce elevation of intracellular pH, Exp. Cell Res. 195: 533–535.PubMedCrossRefGoogle Scholar
  140. Scripture, J. B., Voelker, C., Miller, S., O’Donnell, R. T., Polgar, L., Rade, J., Horazdovsky, B. F., and Hogg, R. W., 1987, High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products, J Mol. Biol. 197: 37–46.PubMedCrossRefGoogle Scholar
  141. Senior, R. M., Hinek, A., Griffin, G. L., Pipoly, D. J., Crouch, E. C., and Mecham, R. P., 1989, Neutrophils show chemotaxis to type IV collagen and its 7S domain and contain a 67 kD type IV collagen binding protein with lectin properties, Am. J. Respir. Cell Mol. Biol. 1: 479–487.PubMedCrossRefGoogle Scholar
  142. Shaw, L. M., Messier, J. M., and Mercurio, A. M., 1990, The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the a6,31 integrin, J. Cell Biol. 110: 2167–2174.PubMedCrossRefGoogle Scholar
  143. Shimizu, Y., Van Seventer, G. A., Horgan, K. J., and Shaw, S., 1990a, Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin, J. Immunol. 145: 59–67.PubMedGoogle Scholar
  144. Shimizu, Y., vanSeventer, G. A., Horgan, K. J., and Shaw, S., 1990b, Roles of adhesion molecules in T-cell recognition: Fundamental similarities between four integrins on resting human T cells (LFA-1, VLA4, VLA-5, VLA-6) in expression, binding, and costimulation, Immunol. Rev. 114: 109–143.PubMedCrossRefGoogle Scholar
  145. Silverstein, S. C., Greenberg, S., Di Virgilio, F., and Steinberg, T. H., 1989, Phagocytosis, in Fundamental Immunology ( W. E. Paul, ed.), pp. 703–720, Raven Press, New York.Google Scholar
  146. Simpson, P. J., Todd, R. F., III, Fantone, J. C., Mickelson, J. K., Griffin, J. D., and Lucchesi, B. R., 1992, Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (AntiMo-1, anti-CD! lb) that inhibits leukocyte adhesion, J. Clin. Invest. 81: 624–629.CrossRefGoogle Scholar
  147. Singer, I. I., Scott, S., Kawka, D. W., and Kazazis, D. M., 1989, Adhesomes: Specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin, and vitronectin in human polymorphonuclear leukocytes and monocytes, J. Cell Biol. 109: 3169–3182.PubMedCrossRefGoogle Scholar
  148. Sligh, J. E., Jr., Hurwitz, M. Y., Zhu, C., Anderson, D. C., and Beaudet, A. L., 1992, An initiation codon mutation in CD18 in association with the moderate phenotype of leukocyte adhesion deficiency, J. Biol. Chem. 267: 714–718.PubMedGoogle Scholar
  149. Smith, J. W., Vestal, D. J., Irwin, S. V., Burke, T. A., and Cheresh, D. A., 1990, Purification and functional characterization of integrin a,,ß5: An adhesion receptor for vitronectin, J. Biol. Chem. 265: 11008–11013.PubMedGoogle Scholar
  150. Springer, T. A., 1990, Adhesion receptors of the immune system, Nature (London) 346: 425–433.CrossRefGoogle Scholar
  151. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, p 1 50,95 glycoprotein family and its molecular basis, J Exp. Med. 160: 1901–1918.PubMedCrossRefGoogle Scholar
  152. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein la-lIa (VLA-2) complex mediates the Mg“-dependent adhesion of platelets to collagen, J. Cell Biol. 108: 1917–1924.PubMedCrossRefGoogle Scholar
  153. Staatz, W. D., Walsh, J. J., Pexton, T., and Santoro, S. A., 1990, The alpha 2 beta 1 integrin cell surface collagen receptor binds to the alpha 1 (I)-CB3 peptide of collagen, J. Biol. Chem. 265: 4778–4781.PubMedGoogle Scholar
  154. Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family, Cell 56: 1057–1062.PubMedCrossRefGoogle Scholar
  155. Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families, Cell 52: 925–933.PubMedCrossRefGoogle Scholar
  156. Staunton, D. E., Dustin, M. L., and Springer, T. A., 1989, Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1, Nature (London) 339: 61–64.CrossRefGoogle Scholar
  157. Takada, Y., and Hemler, M. E., 1989, The primary structure of the VLA-2/collagen receptor a2 subunit (platelet GPIs): Homology to other integrins and the presence of a possible collagen-binding domain, J. Cell Biol. 109: 397–407.PubMedCrossRefGoogle Scholar
  158. Takada, Y., Huang, C., and Hemler, M. E., 1987, Fibronectin receptor structures in the VLA family of heterodimers, Nature (London) 326: 607–609.CrossRefGoogle Scholar
  159. Taniguchi-Sidle, A., and Isenman, D. E., 1992, Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CDI lb/CDI8), J. Biol. Chem. 267: 635–643.PubMedGoogle Scholar
  160. Todd, R. F., and Freyer, D. R., 1988, The CDI1/CD18 leukocyte glycoprotein deficiency, Hematol. Oncol. Clin. North. Am. 2: 13–31.PubMedGoogle Scholar
  161. Tuomanen, E. I., Saukkonen, K., Sande, S., Cioffe, C., and Wright, S. D., 1989, Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes, J. Exp. Med. 170: 959–969.PubMedCrossRefGoogle Scholar
  162. Van de Water, L., Destree, A. T., and Hynes, R. 0., 1983, Fibronectin binds to some baceria but does not promote their uptake by phagocytic cells, Science 220: 201–204.Google Scholar
  163. Vedder, N. B., and Harlan, J. M., 1988, Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium, J. Clin. Invest. 81: 676–682.PubMedCrossRefGoogle Scholar
  164. Vedder, N. B., Winn, R. K., Rice, C. L., Chi, E. Y., Arfors, K.-E., and Harlan, J. M., 1988, A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits, J. Clin. Invest. 81: 939–944.PubMedCrossRefGoogle Scholar
  165. Vedder, N. B., Winn, R. K., Rice, C. L., Chi, E. Y., Arfors, K.-E., and Harlan, J. M., 1990, Inhibition of leukocyte adherence by anti-CD18 monoclonal antibody attenuates reperfusion injury in the rabbit ear, Proc. Natl. Acad. Sci. USA 87: 2643–2646.PubMedCrossRefGoogle Scholar
  166. Virtanen, I., Korhonen, M., Kariniemi, A.-L., Gould, V. E., Laitinen, L., and Ylänne, J., 1990, Integrins in human cells and tumors, Cell Differ. Dev. 32: 215–228.PubMedCrossRefGoogle Scholar
  167. Von Andrian, U. H., Chambers, J. D., McEvoy, L. M., Bargatze, R. F., Arfors, K.-E., and Butcher, E. C., 1991, Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte 132 integrins in vivo, Proc. Natl. Acad. Sci. USA 88: 7538–7542.CrossRefGoogle Scholar
  168. Wacholtz, M. C., Patel, S. S., and Lipsky, P. E., 1989, Leukocyte function-associated antigen 1 is an activation molecule for human T cells, J. Exp. Med. 170: 431–448.PubMedCrossRefGoogle Scholar
  169. Wayner, E. A., Orlando, R. A., and Cheresh, D. A., 1991, Integrins 00 3 and a,ß 5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface, J. Cell Biol. 113: 919–929.PubMedCrossRefGoogle Scholar
  170. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109: 877–889.PubMedCrossRefGoogle Scholar
  171. Williams, D. A., Rios, M., Stephens, C., and Patel, V. P., 1991, Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions, Nature (London) 352: 438–441.CrossRefGoogle Scholar
  172. Woods, A., Smith, C. G., Rees, D. A., and Wilson, G., 1983, Stages in specialization of fibroblast adhesion and deposition of extracellular matrix, Eur. J. Cell Biol. 32: 108–116.PubMedGoogle Scholar
  173. Wright, S. D., and Meyer, B. C., 1985, Fibronectin receptor of human macrophages recognizes the sequence Arg-Gly-Asp-Ser, J. Exp. Med. 162: 762–767.PubMedCrossRefGoogle Scholar
  174. Wright, S. D., and Meyer, B. C., 1986, Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes, J. Immunol. 136: 1758–1764.Google Scholar
  175. Wright, S. D., and Silverstein, S. C., 1982, Tumor-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 156: 1149–1164.PubMedCrossRefGoogle Scholar
  176. Wright, S. D., and Silverstein, S. C., 1983, Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes, J. Exp. Med. 158: 2016–2023.PubMedCrossRefGoogle Scholar
  177. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C., 1983a, Fibronectin and serum amyloid P-component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 158: 1338–1342.PubMedCrossRefGoogle Scholar
  178. Wright, S. D., Rao, P. E., Wesley, C., van Voorhis, W. C., Craigmyle, L. S., Iida, K., Talle, M. A., Westberg, E. F., Goldstein, G., and Silverstein, S. C., 1983b, Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 5699–5703.PubMedCrossRefGoogle Scholar
  179. Wright, S. D., Weitz, J. I., Huang, A. J., Levin, S. M., Silverstein, S. C., and Loike, J. D., 1988, Complement receptor type three (CD! I b/CD 18) of human polymorphonuclear leukocytes recognizes fibrinogen, Proc. Natl. Acad. Sci. USA 85: 7734–7738.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Eric J. Brown
    • 1
  • Frederik P. Lindberg
    • 1
  1. 1.Division of Infectious DiseasesWashington University School of MedicineSt. LouisUSA

Personalised recommendations