Skip to main content

Cryogenic Cooling of Biological Samples for Electron and Optical Microscopy

  • Chapter
Applications of Cryogenic Technology

Part of the book series: Applications of Cryogenic Technology ((APCT,volume 10))

  • 355 Accesses

Abstract

Cryogenic liquid transfer systems have proven to be the method of choice for most cooling applications for spectrophotometric studies. The application of such methods to biological systems requires a few modifications. The cryogenic systems can operate in any position but most liquid samples must be placed in cuvettes in the vertical position from the top. Temperature control from 77K to room temperature can be accomplished using a liquid nitrogen supply, a 20 ohm strip heater, a silicon diode transducer and an automatic temperature controller.

Various designs are presented with limited test data, where standard cuvettes are mounted on OHFC copper in a vacuum shroud necessary for the low temperature studies. Some suggested approaches to expanding the versatility of the systems are given. A unique application is the use of a vacuum cooled sample plate and injecting the test sample into the chamber through a rubber septum giving instantaneous cooling of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Meyer, “Low Temperature Spectroscopy” American Elsevier Publishing, New York (1971).

    Google Scholar 

  2. F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge University Press, Cambridge (1985)

    Google Scholar 

  3. A. W. Robards, and U. B. Sleytr, Low Temperature Methods in Biological Electron Microscopy in “Practical Methods in Electron Microscopy,” Vol. 10, Am M. Glauert, ed., Elsevier Press, Amsterdam (1985)

    Google Scholar 

  4. R. G. Hansen & Associates, Private Communication and “High-Tran Liquid Transfer System,” data sheets, 1988.

    Google Scholar 

  5. Units supplied by Scientific Instruments, West Palm Beach, FL, or LakeShore Cryotronics, Westerville, OH, are generally applicable.

    Google Scholar 

  6. SEM stage cryogenic devices are offered by Oxford Instrument Co., Oxford, England, and R. G. Hansen & Associates, Santa Barbara, CA.

    Google Scholar 

  7. J. Bastacky, C. Goodman, and T. L. Hayes, A Specimen Holder for Low-Temperature Scanning Electron Microscopy, J. Electron Microscopy Technique,. 14: 83–84 (1990).

    Article  CAS  Google Scholar 

  8. S. J. Shah, K. R. Diller, and S. J. Aggarwal, A Personal Computer-Based Temperature Control System for Cryomicroscopy, Cryobiology, 24: 163–167 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. J. A. Sargent, Temperature Scanning Electron Microscopy: Advantages and Applications, Scanning Microscopy, 2: 835–849 (1988).

    PubMed  CAS  Google Scholar 

  10. K. R. Diller, Cryomicroscopy in “Low Temperature Biotechnology Emerging Applications and Engineering Contributions,” J. J. McGrath and K. R. Diller, eds. ASME, BED Vol 10, HTD Vol 98, New York (1989).

    Google Scholar 

  11. P. L. Steponkus, M. F. Dowert, J. R. Ferguson and R. L. Levin, Cryomicroscopy of isolated plant protoplasts, Cryobiology, 21: 209–233 (1984).

    Article  Google Scholar 

  12. Ch. Korber, S. Englich, P. Schwindke, M. W. Scheiwe, G. Rau, A. Hubel, and E. G. Cravalho Low temperature light microscopy and its application to study of freezing in aqueous solutions and biological cell applications, J. Microscopy, 141: 263–276 (1985).

    Article  Google Scholar 

  13. R. G. Hansen & Associates, “Liquid Cryogen Pourfill Dewar,” Bulletin PFD 189.

    Google Scholar 

  14. S. Badulescu, R. Bicca De Alencastro, H. LeThanh, G. Richer, C. Sandorfy, P-P. Vaudreuil, and D. Vocelle, The Protonation of a Retinyl Schiff Base: A Study by FTIR Spectroscopy at Low Temperature in Solution, Photochemistry and Photobiology, 49:313–318(1989).

    Google Scholar 

  15. S. R. Harder, B. A. Feinberg, and S. W. Ragsdale, A Spectroelectrochemical Cell Designed for Low Temperature Electron Paramagnetic Resonance Titration of Oxygen-Sensitive Proteins, Analytical Biochemistry, 181: 283–287 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuld, G.J., Hansen, R.G., Loes, N. (1991). Cryogenic Cooling of Biological Samples for Electron and Optical Microscopy. In: Kelley, J.P. (eds) Applications of Cryogenic Technology. Applications of Cryogenic Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9232-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9232-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9234-8

  • Online ISBN: 978-1-4757-9232-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics