Skip to main content

Two New High-Resolution Confocal Fluorescence Microscopies (4Pi, Theta) with One- and Two-Photon Excitation

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Improving spatial resolution has been one of the main goals of research since the early beginnings of light microscopy. As a microscope objective lens cannot cover more than 35% of the full solid angle of 4rc steradians, the intensity distribution of a focused spot is elongated along the optical axis and the axial resolution in a conventional microscope is generally many times poorer than the lateral resolution. Much effort has been exerted to reduce the axial extent of this light distribution. An important step toward an improved axial resolution was the development of confocal arrangements (Minsky, 1961; Brakenhoff et al., 1979; Wilson et al., 1980; Wijnaendts van Resandt et al., 1985; Carlsson et al., 1985) that permit the investigation of thick samples along their optical axis. However, the axial resolution in a confocal microscope is still poorer than the lateral resolution (Wilson and Sheppard, 1984, pp. 70–72). Further improvement was limited by the fact that, according to diffraction theory, an improvement is only feasible by decreasing the wavelength or by increasing the numerical aperture (NA) of the objective lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, B., Farkas, D.L., Taylor, D.L., and Lanni, F., 1993, Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366:44–48.

    Article  PubMed  CAS  Google Scholar 

  • Born, M., and Wolf, E., 1980, Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  • Bradl, J., Hausmann, M., Ehemann, V., Komitowski, D., and Cremer, C., 1992, A tilting device for three-dimensional microscopy: Applications to in situ imaging of interphase cell nuclei. J. Microsc. 168:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.

    Article  Google Scholar 

  • Carlsson, K., Danielsson, P.E., Lenz, R., Liljeborg, A., Majlöf, L., and Aslund, N., 1985, Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10:53–55.

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Hänninen, P., and Hell, S., 1993, Significantly improved axial resolution with complementary interferences in a 4Pi-confocal fluorescent microscope, presented at the 1993 International Conference on Confocal Microscopy & 3D Image Processing, Sydney.

    Google Scholar 

  • Hänninen, P., and Hell, S., 1993, Significantly improved axial resolution with complementary interferences in a 4Pi-confocal fluorescent microscope, presented at the 1993 International Conference on Confocal Microscopy & 3D Image Processing, Sydney.

    Google Scholar 

  • Hell, S., and Stelzer, E.H.K., 1992a, Properties of a 4Pi-confocal fluorescence microscope, J. Opt. Soc. Am. A 9:2159–2166.

    Article  Google Scholar 

  • Hell, S., and Stelzer, E.H.K., 1992b, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.

    Article  Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Article  Google Scholar 

  • Hell, S.W., Stelzer, E.H.K., Lindek, S., and Cremer, C., 1994a, Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy, Opt. Lett. 19:222–224.

    Article  PubMed  CAS  Google Scholar 

  • Hell, S.W., Lindek, S., and Stelzer, E.H.K., 1994b, Enhancing the axial resolution in far-field light microscopy: Two-photon 4Pi confocal fluorescence microscopy, J. Mod. Opt. 41:675–681.

    Article  Google Scholar 

  • Hell, S.W., Lindek, S., Cremer, C., and Stelzer, E.H.K., 1994c, Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution, Appl. Phys. Lett. 64:1335–1337.

    Article  Google Scholar 

  • Kodak, Optical Products, Rochester, USA.

    Google Scholar 

  • Lanni, F., 1986, Standing-wave fluorescence microscopy. In: Applications of Fluorescence in the Biomedical Sciences (D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, and R.R. Birge, eds.), Alan R. Liss, New York.

    Google Scholar 

  • Lindek, S., 1993, Auflösungsmessungen mit dem 4Pi-konfokalen Rastermikroskop. Diploma thesis, Universität Heidelberg.

    Google Scholar 

  • Lindek, S., and Stelzer, E.H.K., 1994, Confocal theta microscopy and 4Pi-con-focal theta microscopy. SPIE Proc. 2184:188–194.

    Article  Google Scholar 

  • Lindek, S., Pick, R., and Stelzer, E.H.K., 1994, Confocal theta microscope with three objective lenses, Rev. Sci. Instr., in press.

    Google Scholar 

  • Minsky, M., 1961, Microscopy apparatus, U.S. Patent No. 3,013,467 (filed 1957).

    Google Scholar 

  • Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II, Proc. R. Soc. Lond. Ser. A 253:358–379.

    Article  Google Scholar 

  • Schott, 1984, Optisches Glas, Mainz, Germany.

    Google Scholar 

  • Shaw, P.J., Agard, D.A., Hiraoka, Y., and Sedat, J.W., 1989, Tilted view reconstruction in optical microscopy, Biophys. J. 55:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C.J.R., and Kompfner, R., 1978, Resonant scanning optical microscope. Appl. Optics 17:2879–2882.

    Article  CAS  Google Scholar 

  • Stelzer, E.H.K., and Lindek, S., 1994, Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to t le illumination axis: Confocal theta microscopy, Opt. Commun. 11l:536–547.

    Article  Google Scholar 

  • Stelzer, E.H.K., Hell, S., Lindek, S., Stricker, R., Pick, R., Storz, C., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.

    Article  CAS  Google Scholar 

  • Wijnaendts van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1985, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.

    Article  Google Scholar 

  • Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.

    Google Scholar 

  • Wilson, T., Gannaway, J.N., and Johnson, P., 1980, A scanning optical micio-scope for the inspection of semiconductor materials and devices, J. Microsc. 118:309–314.

    Article  CAS  Google Scholar 

  • Wolfram, S., 1991, Mathematica-A System for Doing Mathematics by Computer, Addison-Wesley, Reading, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindek, S., Stelzer, E.H.K., Hell, S.W. (1995). Two New High-Resolution Confocal Fluorescence Microscopies (4Pi, Theta) with One- and Two-Photon Excitation. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics