Skip to main content

CVD of Conductors

  • Chapter
Chemical Vapor Deposition
  • 485 Accesses

Abstract

Conductor systems in very large scale integrated VLSI circuits act as the conduits for signals to be transported to and away from electrical devices. As device dimensions and film thicknesses scale down, thin film properties of conductors (see Chapter 2) begin to dominate and special processing conditions become necessary. For instance, it becomes essential to lower the processing temperature so as to minimize undesirable thermally activated processes, such as hillock formation in aluminum-based metallization, or interdiffusion and reaction between adjacent films. Similarly, incorporation of impurities in the film matrix can result in significant degradation in properties, such as resistivity, film roughness, and stress, as the films get thinner. In this chapter, we will first review the requirements for conductor systems in VLSI circuits, without regard to the mode of deposition of the conductors. We will then consider the CVD of individual films, keeping in mind the device requirements. Finally we will examine more recent trends in CVD of conductors, with respect to new materials and with respect to newer CVD processes for established films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Weste, and K. Eshraghian, Principles of CMOS VLSI Design, p. 141, Addison-Wesley, Reading, Mass., 1985.

    Google Scholar 

  2. R. S. Muller, and T.I. Kamins, Device Electronics for Integrated Circuits, p. 443, John Wiley, New York, 1986.

    Google Scholar 

  3. C. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, Mass., 1980.

    Google Scholar 

  4. I. Ames, F. d’Heurle, and R. Hortsmann, IBM J. R and D 14, 461 (1970).

    Article  Google Scholar 

  5. Tungsten and Other Refractory Metals for VLSI Applications, Vols. I to V, Materials Research Society, Pittsburgh, 1986, 1987, 1988, 1989 and 1990.

    Google Scholar 

  6. Handbook of Physics and Chemistry, 65th ed. (R. C. Weast, ed.) CRC Press, 1986.

    Google Scholar 

  7. R. W. Haskell, and J. G. Byrne, in Treatise on Materials Science and Technology, Vol. I, (Herman, ed.), p. 293, Academic Press, New York, 1972

    Google Scholar 

  8. C. M. MelliarSmith, A. C. Adams, R. H. Kaiser, and R. A. Kushner, J. Electrochem. Soc., 121, 298 (1974).

    Article  Google Scholar 

  9. M. L. Green, in Proc. 10th Int. Conf. on Chemical Vapor Deposition, Vol. 87–8 (Cullen, ed.), p. 603, The Electrochemical Society, Pennington, N.J., 1987.

    Google Scholar 

  10. R.A. Levy, and M.L. Green, J. Electrochem. Soc., 134 (2), 37C (1987).

    Article  Google Scholar 

  11. T. Ohba, T. Suzuki, and T. Hara, in Tungsten and Other Refractory Metals for VLSI Applications III ( Blewer and McConica, eds.), p. 17, Materials Research Society, Pittsburgh, 1989.

    Google Scholar 

  12. JANAF Thermochemical Tables,2nd Ed. (D. R. Stull and H. Prophet, eds.) NSRD5–NBS37, 1971.

    Google Scholar 

  13. E. K. Broadbent, and C. L. Ramiller, J. Electrochem. Soc. 131 (6), 1427 (1984).

    Article  Google Scholar 

  14. H. Cheung, in Proc. 3rd Int. Conf on CVD (F. Glaski, ed.), p. 136, The American Nuclear Society, Hinsdale, 111., 1972.

    Google Scholar 

  15. E. J. McInerney, B. L. Chin, and E. K. Broadbent, paper presented at the Workshop on Tungsten and Other Advanced Metals for ULSI Applications VII, Dallas, Texas, Oct. 22–24, 1990.

    Google Scholar 

  16. C. M. McConica, and K. Krishnamani, J. Electrochem. Soc. 133 (12), 2542 (1986).

    Article  Google Scholar 

  17. K. Y. Ahn, T. Lin, and J. Angilello, in Tungsten and Other Refractory Metals for VLSI Applications III ( Wells, ed.), p. 25, Materials Research Society, Pittsburgh, 1988.

    Google Scholar 

  18. E. J. McInerney, T. W. Mountsier, B. L. Chin, and E. K. Broadbent, paper presented at the Advanced Metallization for ULSI Applications Conference, Murray Hill, N.J., Oct. 8–10, 1991.

    Google Scholar 

  19. S. Sivaram, E. Rode, and R. Shukla, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V(Wong and Furukawa, eds.), p. 47, Materials Research Society, Pittsburgh, 1990.

    Google Scholar 

  20. J. E. J. Schmitz, R. C. Ellwanger, and A. J. M. van Dijk, in Tungsten and Other Refractory Metals for VLSI Applications III (Wells, ed.), p. 55, Materials Research Society, Pittsburgh, 1988.

    Google Scholar 

  21. R. Blumenthal and G. C. Smith, XXX, in Tungsten and Other Refractory Metals for VLSI Applications III (Wells, ed.), p. 47, Materials Research Society, Pittsburgh, 1988.

    Google Scholar 

  22. V. V. S. Rana, J. A. Taylor, L. H. Holschwandner, and N. S. Tsai, in Tungsten and Other Refractory Metals for VLSI Applications II (Broadbent, ed.), p. 187, Materials Research Society, Pittsburgh, 1987.

    Google Scholar 

  23. S. Sivaram, M. L. A. Dass, C. S. Wei, B. Tracy, and R. Shukla, J. Vac. Sci. Technol. A11 (1), 87 (1993).

    Article  Google Scholar 

  24. J. R. Creighton, J. Vac. Sci. Technol. A5, 1739 (1987).

    Article  Google Scholar 

  25. P. van der Putte, D. K. Sadana, E. K. Broadbent, and A. E. Morgan, Appl. Phys. Lett. 49 (25), 1723 (1986).

    Article  Google Scholar 

  26. E. G. Colgan, P. M. Fryer, and K. Y. Ahn, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V (Wong and Furukawa, eds.), p. 243, Materials Research Society, Pittsburgh, 1990.

    Google Scholar 

  27. S. P. Murarka, private communications.

    Google Scholar 

  28. C. Lampe-Onnerud, A. Harsta, and U. Jansson, J. Physique C2, 881, 1991.

    Google Scholar 

  29. D. Temple, and A. Reisman, J. Electrochem. Soc. 136 (11), 3525 (1989)

    Article  Google Scholar 

  30. S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, and P. J. Brock, Appl. Phys. Lett. 59 (11), 2332 (1991).

    Article  Google Scholar 

  31. W. G. Lai, Y. Xie, and G. L. Griffin, J. Electrochem. Soc. 138 (11), 3499 (1991).

    Article  Google Scholar 

  32. C. Oehr, and H. Suhr, Appl. Phys. A45, 151 (1988).

    Google Scholar 

  33. A. E. Kaloyeros, et al., J. Electronic Materials 19 (3), 271 (1990).

    Article  Google Scholar 

  34. J. A. T. Norman, B. A. Muratore, P. N. Dyer, D. A. Roberts and A. K. Hochberg, XXX, in Proc. IEEE VMIC 1991, p. 123

    Google Scholar 

  35. J. Pelletier, R. Pantel, J. C. Oberlin, Y. Pauleau, and P. Guoy-Pailler, J. Appl. Phys. 70 (1), 3862 (1991).

    Article  Google Scholar 

  36. S. P. Murarka, private communications.

    Google Scholar 

  37. R. A. Levy, and M. L. Green, J. Electrochem. Soc. 134 (2), 37C (1987).

    Article  Google Scholar 

  38. D. A. Mantel], J. Vac. Sci. Technol. A9 (3), 1045 (1991).

    Google Scholar 

  39. D. B. Breach, S. E. Blum, and F. K. LeGoues, J. Vac. Sci. Technol. A7 (5), 3117 (1989)

    Article  Google Scholar 

  40. M. E. Gross, K. P. Cheung, C. G. Fleming, J. Kovalchick, and L. A. Heimbrook, J. Vac. Sci. Technol. A9 (1), 57 (1991).

    Article  Google Scholar 

  41. G. S. Higashi, K. Raghavachari, and M. L. Steigerwald, J. Vac. Sci. Technol. B8 (1), 103 (1990).

    Article  Google Scholar 

  42. K. P. Cheung, C. J. Case, R.Liu, R. J. Schutz, R. S. Wagner, L. Kwakman, D. Huibregtse, H. Piekaar, and E. Granneman, in Proc. IEEE VMIC, p. 303 (1990).

    Google Scholar 

  43. J. Y. Tsao, and D. J. Ehrlich, Appl. Phys. Lett. 45 (6), 617 (1984).

    Article  Google Scholar 

  44. T. Kato, T. Ito, and M. Maeda, J. Electrochem. Soc. 135 (2), 455 (1988).

    Article  Google Scholar 

  45. F. M. d’Heurle, and P. S. Ho, XXX, in Thin Film Interdiffusion and Reactions (Tu, Poate, and Meyer, eds.), p. 243, John Wiley, New York, 1978.

    Google Scholar 

  46. L. Kwakman, D. Huibregtse, H. Piekaar, E. Granneman, K. P. Cheung, C. J. Case, R. Liu, R. J. Schutz, and R. S. Wagner, in Proc. IEEE VMIC, 1990, p. 282.

    Google Scholar 

  47. C. Bernard, R. Madar, and Y. Pauleau, Solid State Technol. 2, 79 (1989)

    Google Scholar 

  48. E. J. Rode, and W. R. Harshbarger, J. Vac. Sci. Technol. B8 (1), 91 (1990).

    Article  Google Scholar 

  49. S. P. Murarka, Silicides for VLSI Applications, Academic Press, New York, 1983.

    Google Scholar 

  50. D. L. Brors, J. A. Fair, K. A. Monnig, and K. C. Saraswat, Solid State Technol. 26 (4) 183 (1983).

    Google Scholar 

  51. T. Hara, T. Miyamoto, and T. Yokoyama, J. Electrochem Soc. 136 (4), 1177 (1989).

    Article  Google Scholar 

  52. C. Fuhs, private communications.

    Google Scholar 

  53. K. C. Saraswat, D. L. Brors, J. A. Fair, K. A. Monnig, and R. Beyers, IEEE Trans. Electron Devices ED30(11), 1497 (1983).

    Google Scholar 

  54. M. Wittmer, J. Vac. Sci. Technol. A3 (4), 1797 (1985).

    Article  Google Scholar 

  55. H. J. Goldschmidt, Interstitial Alloys, Plenum Press, New York, 1967.

    Google Scholar 

  56. A. Sherman, J. Electrochem. Soc. 137 (6), 1892 (1990)

    Article  Google Scholar 

  57. M. J. Buiting, A. F. Otterloo, and A. H. Montree, J. Electrochem. Soc. 138 (2), 500 (1991).

    Article  Google Scholar 

  58. N. Yokoyama, K. Hinode, and Y. Homma, J. Electrochem. Soc. 138 (1), 190 (1991).

    Article  Google Scholar 

  59. M. R. Hilton, L. R. Narasimham, S. Nakamura, M. Salmeron, and G. A. Somorjai, Thin Solid Films, 139, 247 (1986)

    Article  Google Scholar 

  60. E. F. Gleason, Ph.D. thesis, University of California, Berkeley, 1987.

    Google Scholar 

  61. R. M. Fix, R. G. Gordon, and D. M. Hoffman, Mater Res. Soc. Symp. Proc. 168, 357 (1990).

    Article  Google Scholar 

  62. I. J. Raaijmakers in Proc. IEEE VMIC, 1992, p. 260.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sivaram, S. (1995). CVD of Conductors. In: Chemical Vapor Deposition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4751-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4751-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4753-9

  • Online ISBN: 978-1-4757-4751-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics