Skip to main content

Lignin-Degrading Enzymes from the Filamentous Fungus Phanerochaete chrysosporium

  • Chapter
Biocatalysts for Industry

Part of the book series: Topics in Applied Chemistry ((TAPP))

Abstract

Lignin is an aromatic polymer which surrounds woody tissue, providing structural rigidity and protection from microbial attack. Next to cellulose, it is the most abundant renewable resource on earth. It is estimated that approximately 25% of the carbon fixed by photosynthesis is incorporated into lignin. The lignin polymer is composed of phenylpropanoid subunits linked together by a variety of bonds resulting in a nonrepeating motif.1–3 Most biological macromolecules such as cellulose, RNA, DNA, and proteins are largely linear polymers whose subunits are linked together by a repeating bond; thus the mechanism of polymer synthesis and degradation is generally centered around this common bond. Lignin synthesis and degradation differ from this common mechanism since it contains a variety of linkages.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Harkin, in: Oxidative Coupling of Phenols (W. I. Taylor and A. R. Battersby, eds.), Marcel Dekker, New York (1967).

    Google Scholar 

  2. K. V. Sarkanen and C. H. Ludwig Lignins: Occurrences Formation Structure and Reactions,Wiley-Interscience, New York (1971)

    Google Scholar 

  3. K. Freudenberg, in: Constitution and Biosynthesis of Lignin ( A. C. Neish and K. Freudenberg, eds.), Springer, New York (1971).

    Google Scholar 

  4. E. Adler, Wood Sci. Technol. 11, 169 (1977).

    CAS  Google Scholar 

  5. T. K. Kirk and R. L. Farrell, Annu. Rev. Microbiol. 41, 465 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. R. L. Crawford and D. L. Crawford, Enzyme Microb. Technol. 6, 434 (1984).

    Article  CAS  Google Scholar 

  7. P. Keyser, T. K. Kirk, and J. G. Zeikus, J. Bacteriol. 135, 790 (1978).

    PubMed  CAS  Google Scholar 

  8. T. W. Jeffries, S. Choi, and T. K. Kirk, Appl. Environ. Microbiol. 42, 290 (1981).

    PubMed  CAS  Google Scholar 

  9. T. K. Kirk, W. J. Connors, R. D. Bleam, W. F. Hackett, and J. G. Zeikus, Proc. Natl. Acad. Sci. USA 72, 2515 (1975).

    Article  CAS  Google Scholar 

  10. C.-L. Chen and H.-M. Chang, Holzforschung 36, 3 (1982).

    Article  Google Scholar 

  11. C.-L. Chen, H.-M. Chang, and T. K. Kirk, J. Wood Chem. Technol 3, 35 (1983).

    Article  Google Scholar 

  12. T. K. Kirk and F. Nakatsubo, Biochim. Biophys. Acta 756, 376 (1983).

    Article  CAS  Google Scholar 

  13. F. Nakatsubo, I. D. Reid, and T. K. Kirk, Biochim. Biophys. Acta 719, 284 (1982).

    Article  CAS  Google Scholar 

  14. M. Tien and T. K. Kirk, Science 221, 661 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. J. K. Glenn, M. A. Morgan, M. B. Mayfield, M. Kumahara, and M. H. Gold, Biochem. Biophys. Res. Commun. 114, 1077 (1983).

    Article  CAS  Google Scholar 

  16. L. J. Forney, C. A. Reddy, M. Tien, and S. D. Aust, J. Biol. Chem. 257, 11455 (1982).

    PubMed  CAS  Google Scholar 

  17. M. Tien and T. K. Kirk, Proc. Natl. Acad. Sci. USA 81, 2280 (1984).

    Article  CAS  Google Scholar 

  18. R. L. Farrell, K. E. Murtagh, M Tien, M. D. Mozuch, and T. K. Kirk, Enzyme Microb. Technol. 11, 322 (1989).

    Article  CAS  Google Scholar 

  19. M. Tien and T. K. Kirk, Methods in Enzymol. 161, 238 (1988).

    Article  CAS  Google Scholar 

  20. E. A. Pease, A. Andrawis, and M. Tien, J. Biol. Chem. 264, 13531 (1989).

    PubMed  CAS  Google Scholar 

  21. A. Paszczynski, V-B. Huynh, and R. Crawford, FEMS Microbiol. Lett. 29, 37 (1985).

    Article  CAS  Google Scholar 

  22. J. K. Glenn and M. H. Gold, Arch. Biochem. Biophys. 242, 329 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. M. S. A. Leisola, B. Kozulic, F. Meussdoerffer, and A. Fiechter, J. Biol. Chem. 262, 419 (1987).

    PubMed  CAS  Google Scholar 

  24. M. Tien and C.-P. D. Tu, Nature 326, 520 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. H. A. de Boer, Y. Z. Zhang, C. Collins, and C. A. Reddy, Gene 60, 93 (1987).

    Article  PubMed  Google Scholar 

  26. M. Tien, CRC Critical Reviews in Microbiology 15, 141 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. T. Higuchi, in: Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, Florida 557 (1985).

    Google Scholar 

  28. T. Kamaya and T. Higuchi, FEMS Microbiol. Lett. 22, 89 (1984).

    Article  CAS  Google Scholar 

  29. T. K. Kirk, M. Tien, P. J. Kersten, M. D. Mozuch, and B. Kalyanaraman, Biochem. J. 236, 279 (1986).

    PubMed  CAS  Google Scholar 

  30. S. Kawai, T. Umezawa, and T. Higuchi, Appl. Environ. Microbiol. 50, 1. 505 (1985).

    Google Scholar 

  31. T. Umezawa and T. Higuchi, FEBS Lett. 182, 257 (1985).

    Article  CAS  Google Scholar 

  32. M. Tien, T. K. Kirk, C. Bull, and J. A. Fee, J. Biol. Chem. 261, 1687 (1986).

    PubMed  CAS  Google Scholar 

  33. V. Renganathan and M. Gold, Biochemistry 25, 1626 (1986).

    Article  CAS  Google Scholar 

  34. A. Andrawis, K. A. Johnson, and M. Tien, J. Biol. Chem. 263, 1195 (1988).

    PubMed  CAS  Google Scholar 

  35. D. Kuila, M. Tien, J. A. Fee, and M. R. Ondrias, Biochemistry 24, 3394 (1986).

    Article  Google Scholar 

  36. P. J. Kersten, M. Tien, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 260, 2609 (1985).

    PubMed  CAS  Google Scholar 

  37. K. E. Hammel, M. Tien, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 260, 8348 (1985).

    PubMed  CAS  Google Scholar 

  38. H. E. Shoemaker, P. J. Harvey, R. M. Bowen, and J. M. Palmer, FEBS Lett. 183, 13 (1985).

    Article  Google Scholar 

  39. K. E. Hammel, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 261, 16948 (1986).

    PubMed  CAS  Google Scholar 

  40. R. Makino, R. Chiang, and L. P. Hager, Biochemistry 15, 4748 (1976).

    Article  PubMed  CAS  Google Scholar 

  41. H. Yamada, R. Makino, and I. Yamazaki, Arch. Biochem. Biophys. 169, 344 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. J. Ricard, G. Mazza, and R. J. P. Williams, Eur. J. Biochem. 28, 566 (1972).

    Article  PubMed  CAS  Google Scholar 

  43. C. W. Conroy, P. Tyma, P. H. Daum, and J. E. Erman, Biochim. Biophys. Acta 537, 62 (1978).

    Article  CAS  Google Scholar 

  44. C. D. Millis, D. Cai, M. T. Stankovich, and M. Tien, Biochemistry, in press (1989).

    Google Scholar 

  45. J. F. Taylor and V. E. Morgan, J. Biol. Chem. 144, 15 (1942).

    CAS  Google Scholar 

  46. Y. Hayashi and I. Yamazaki, J. Biol. Chem. 254, 9101 (1979).

    PubMed  CAS  Google Scholar 

  47. M. A. Ator and P. Ortiz de Montellano, J. Biol. Chem. 262, 1542 (1987).

    PubMed  CAS  Google Scholar 

  48. M. A. Ator, S. K. David, and P. Ortiz de Montellano, J. Biol. Chem. 262, 14954 (1987).

    PubMed  CAS  Google Scholar 

  49. Y. Z. Zhang, G. J. Zylstra, R. H. Olsen, and C. A. Reddy Biochem. Biophys. Res. Commun. 137,649 (1986).

    Google Scholar 

  50. A. Andrawis, E. Pease, I. Kuan, E. Holzbaur, and M. Tien Biochem. Biophys. Res. Commun. 162,673 (1989).

    Google Scholar 

  51. D. Pribnow, M. B. Mayfield, V. J. Nipper, J. A. Brown, and M. H. Gold, J. Biol. Chem. 264, 5036 (1989).

    PubMed  CAS  Google Scholar 

  52. D. J. Lipman and W. R. Pearson, Science 227, 1435 (1985).

    Article  PubMed  CAS  Google Scholar 

  53. K. G. Welinder, FEBS Leu. 72, 19 (1976).

    Article  CAS  Google Scholar 

  54. J. Kaput, S. Goltz, and G. J. Blobel, J. Biol. Chem. 257, 15054 (1982).

    PubMed  CAS  Google Scholar 

  55. T. L. Poulos and J. Kraut, J. Biol. Chem. 255, 8199 (1980).

    PubMed  CAS  Google Scholar 

  56. A. Neuberger, A. Gottshalk, R. D. Marshal, and R. D. Spiro, in: The Glycoproteins: Their Composition, Structure and Function, Part A ( A. Gottschalk, ed.), p. 450, Elsevier, Amsterdam (1972).

    Google Scholar 

  57. N. J. Proudfoot and G. G. Brownbee, Nature 263, 211 (1976).

    Article  PubMed  CAS  Google Scholar 

  58. T. L. Smith, H. Schalch, J. Gaskell, S. Covert, and D. Cullen, Nucleic Acids Res. 16, 1219 (1988).

    Article  PubMed  CAS  Google Scholar 

  59. A. Brown, P. F. G. Sims, U. Raeder, and P. Broda, Gene 73, 77 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. Y. Asada, Y. Kimura, M. Kuwahara, A. Tsukamoto, K. Koide, A. Oke, and M. Takanami, Appl. Microbiol. Biotechnol. 29, 469 (1988).

    Article  CAS  Google Scholar 

  61. I. Walther, M. Kafiri, J. Reiser, F. Suter, B. Fritsche, M. Saloheimo, M. Leisola, T. Teeri, J. K. C. Knowles, and A. Feichter, Gene 70, 127 (1988).

    Article  PubMed  CAS  Google Scholar 

  62. H. Schalch, J. Gaskell, T. Smith, and D. Cullen, Mol. Cell Biol. 9, 2743 (1989).

    PubMed  CAS  Google Scholar 

  63. E. L. F. Holzbaur, A. Andrawis, and M. Tien, Biochem. Biophys. Res. Commun. 155, 626 (1988).

    Article  CAS  Google Scholar 

  64. M. Kozak, Nucleic Acids Res. 9, 5233 (1981).

    Article  PubMed  CAS  Google Scholar 

  65. M. Kuwahara, J. K. Glenn, M. A. Morgan, and M. H. Gold, FEBS Lett. 169, 247 (1984).

    Article  CAS  Google Scholar 

  66. R. L. Farrell, P. Gelep, A. Anilionis, K. Javaherian, T. E. Maione, and J. R. Rusche, European Patent Application number 87,810, 516. 2.

    Google Scholar 

  67. A. Andrawis, E. A. Pease, and M. Tien, in: Biotechnology in Pulp and Paper Manufacturing: Applications and Fundamental Investigation (T. K. Kirk and H.-M. Chang, eds. ), Butterworth Publishers (1989).

    Google Scholar 

  68. M. Gribskov and R. R. Burgess, Gene 26, 109 (1983).

    Article  PubMed  CAS  Google Scholar 

  69. T. T. Teeri, P. Lehtovaara, M. Penttila, M. Saloheimo, and J. K. C. Knowles, The Third Chemical Congress of North America, Toronto, Ontario, Canada, June 5 - 11 (1988).

    Google Scholar 

  70. M. Alic, J. R. Kornegay, D. Pribnow, and M. H. Gold, Appl. Environ. Microbiol. 55, 406 (1989).

    PubMed  CAS  Google Scholar 

  71. T. Randall, T. R. Rao, and C. A. Reddy Biochem. Biophys. Res. Commun. 161,720 (1989).

    Google Scholar 

  72. K.-E. Eriksson and T. K. Kirk, in: Comprehensive Biotechnology ( C. L. Cooney and A. E. Humphrey, eds.), Pergamon, Toronto (1985).

    Google Scholar 

  73. S. D. Haemmerli, M. S. A. Leisola, and A. Feichter FEMS Microbiol. Lett. 35, 33 (1985).

    Google Scholar 

  74. F. Qui, D. Dolphin, T. Wijeseker, R. Farrell, and P. Skerker, in: Biotechnology in Pulp and Paper Manufacturing: Applications and Fundamental Investigation (T. K. Kirk and H.-M. Chang, eds. ), Butterworth Publishers (1989).

    Google Scholar 

  75. T. K. Kirk and H.-M. Chang, Enzyme Microb. Technol. 3, 189 (1981).

    Article  CAS  Google Scholar 

  76. V.-B. Huynh, H.-M. Chang, and T. W. Joyce, Tappi J. 68, 98 (1985).

    Google Scholar 

  77. J. A. Bumpus, M. Tien, D. Wright, and S. D. Aust, Science 228, 1434 (1985).

    Article  PubMed  CAS  Google Scholar 

  78. D. C. Eaton, Enzyme Microb. Technol. 7, 194 (1985).

    Google Scholar 

  79. S. D. Haemmerli, M. S. A. Leisola, D. Sanglard, and A. Fiechter, J. Biol. Chem. 261, 6900 (1986).

    PubMed  CAS  Google Scholar 

  80. G. J. Mileski, J. A. Bumpus, M. Jurek, and S. D. Aust, Appl. Environ. Microbiol. 54, 2885 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pease, E.A., Tien, M. (1991). Lignin-Degrading Enzymes from the Filamentous Fungus Phanerochaete chrysosporium . In: Dordick, J.S. (eds) Biocatalysts for Industry. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4597-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4597-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3216-7

  • Online ISBN: 978-1-4757-4597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics