Lignin-Degrading Enzymes from the Filamentous Fungus Phanerochaete chrysosporium

  • Elizabeth A. Pease
  • Ming Tien
Part of the Topics in Applied Chemistry book series (TAPP)


Lignin is an aromatic polymer which surrounds woody tissue, providing structural rigidity and protection from microbial attack. Next to cellulose, it is the most abundant renewable resource on earth. It is estimated that approximately 25% of the carbon fixed by photosynthesis is incorporated into lignin. The lignin polymer is composed of phenylpropanoid subunits linked together by a variety of bonds resulting in a nonrepeating motif.1–3 Most biological macromolecules such as cellulose, RNA, DNA, and proteins are largely linear polymers whose subunits are linked together by a repeating bond; thus the mechanism of polymer synthesis and degradation is generally centered around this common bond. Lignin synthesis and degradation differ from this common mechanism since it contains a variety of linkages.4


Electron Spin Resonance Aromatic Aldehyde Electron Spin Resonance Signal Lignin Peroxidase Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Harkin, in: Oxidative Coupling of Phenols (W. I. Taylor and A. R. Battersby, eds.), Marcel Dekker, New York (1967).Google Scholar
  2. 2.
    K. V. Sarkanen and C. H. Ludwig Lignins: Occurrences Formation Structure and Reactions,Wiley-Interscience, New York (1971) Google Scholar
  3. 3.
    K. Freudenberg, in: Constitution and Biosynthesis of Lignin ( A. C. Neish and K. Freudenberg, eds.), Springer, New York (1971).Google Scholar
  4. 4.
    E. Adler, Wood Sci. Technol. 11, 169 (1977).Google Scholar
  5. 5.
    T. K. Kirk and R. L. Farrell, Annu. Rev. Microbiol. 41, 465 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    R. L. Crawford and D. L. Crawford, Enzyme Microb. Technol. 6, 434 (1984).CrossRefGoogle Scholar
  7. 7.
    P. Keyser, T. K. Kirk, and J. G. Zeikus, J. Bacteriol. 135, 790 (1978).PubMedGoogle Scholar
  8. 8.
    T. W. Jeffries, S. Choi, and T. K. Kirk, Appl. Environ. Microbiol. 42, 290 (1981).PubMedGoogle Scholar
  9. 9.
    T. K. Kirk, W. J. Connors, R. D. Bleam, W. F. Hackett, and J. G. Zeikus, Proc. Natl. Acad. Sci. USA 72, 2515 (1975).CrossRefGoogle Scholar
  10. 10.
    C.-L. Chen and H.-M. Chang, Holzforschung 36, 3 (1982).CrossRefGoogle Scholar
  11. 11.
    C.-L. Chen, H.-M. Chang, and T. K. Kirk, J. Wood Chem. Technol 3, 35 (1983).CrossRefGoogle Scholar
  12. 12.
    T. K. Kirk and F. Nakatsubo, Biochim. Biophys. Acta 756, 376 (1983).CrossRefGoogle Scholar
  13. 13.
    F. Nakatsubo, I. D. Reid, and T. K. Kirk, Biochim. Biophys. Acta 719, 284 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Tien and T. K. Kirk, Science 221, 661 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    J. K. Glenn, M. A. Morgan, M. B. Mayfield, M. Kumahara, and M. H. Gold, Biochem. Biophys. Res. Commun. 114, 1077 (1983).CrossRefGoogle Scholar
  16. 16.
    L. J. Forney, C. A. Reddy, M. Tien, and S. D. Aust, J. Biol. Chem. 257, 11455 (1982).PubMedGoogle Scholar
  17. 17.
    M. Tien and T. K. Kirk, Proc. Natl. Acad. Sci. USA 81, 2280 (1984).CrossRefGoogle Scholar
  18. 18.
    R. L. Farrell, K. E. Murtagh, M Tien, M. D. Mozuch, and T. K. Kirk, Enzyme Microb. Technol. 11, 322 (1989).CrossRefGoogle Scholar
  19. 19.
    M. Tien and T. K. Kirk, Methods in Enzymol. 161, 238 (1988).CrossRefGoogle Scholar
  20. 20.
    E. A. Pease, A. Andrawis, and M. Tien, J. Biol. Chem. 264, 13531 (1989).PubMedGoogle Scholar
  21. 21.
    A. Paszczynski, V-B. Huynh, and R. Crawford, FEMS Microbiol. Lett. 29, 37 (1985).CrossRefGoogle Scholar
  22. 22.
    J. K. Glenn and M. H. Gold, Arch. Biochem. Biophys. 242, 329 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    M. S. A. Leisola, B. Kozulic, F. Meussdoerffer, and A. Fiechter, J. Biol. Chem. 262, 419 (1987).PubMedGoogle Scholar
  24. 24.
    M. Tien and C.-P. D. Tu, Nature 326, 520 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    H. A. de Boer, Y. Z. Zhang, C. Collins, and C. A. Reddy, Gene 60, 93 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Tien, CRC Critical Reviews in Microbiology 15, 141 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Higuchi, in: Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, Florida 557 (1985).Google Scholar
  28. 28.
    T. Kamaya and T. Higuchi, FEMS Microbiol. Lett. 22, 89 (1984).CrossRefGoogle Scholar
  29. 29.
    T. K. Kirk, M. Tien, P. J. Kersten, M. D. Mozuch, and B. Kalyanaraman, Biochem. J. 236, 279 (1986).PubMedGoogle Scholar
  30. 30.
    S. Kawai, T. Umezawa, and T. Higuchi, Appl. Environ. Microbiol. 50, 1. 505 (1985).Google Scholar
  31. 31.
    T. Umezawa and T. Higuchi, FEBS Lett. 182, 257 (1985).CrossRefGoogle Scholar
  32. 32.
    M. Tien, T. K. Kirk, C. Bull, and J. A. Fee, J. Biol. Chem. 261, 1687 (1986).PubMedGoogle Scholar
  33. 33.
    V. Renganathan and M. Gold, Biochemistry 25, 1626 (1986).CrossRefGoogle Scholar
  34. 34.
    A. Andrawis, K. A. Johnson, and M. Tien, J. Biol. Chem. 263, 1195 (1988).PubMedGoogle Scholar
  35. 35.
    D. Kuila, M. Tien, J. A. Fee, and M. R. Ondrias, Biochemistry 24, 3394 (1986).CrossRefGoogle Scholar
  36. 36.
    P. J. Kersten, M. Tien, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 260, 2609 (1985).PubMedGoogle Scholar
  37. 37.
    K. E. Hammel, M. Tien, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 260, 8348 (1985).PubMedGoogle Scholar
  38. 38.
    H. E. Shoemaker, P. J. Harvey, R. M. Bowen, and J. M. Palmer, FEBS Lett. 183, 13 (1985).CrossRefGoogle Scholar
  39. 39.
    K. E. Hammel, B. Kalyanaraman, and T. K. Kirk, J. Biol. Chem. 261, 16948 (1986).PubMedGoogle Scholar
  40. 40.
    R. Makino, R. Chiang, and L. P. Hager, Biochemistry 15, 4748 (1976).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Yamada, R. Makino, and I. Yamazaki, Arch. Biochem. Biophys. 169, 344 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    J. Ricard, G. Mazza, and R. J. P. Williams, Eur. J. Biochem. 28, 566 (1972).PubMedCrossRefGoogle Scholar
  43. 43.
    C. W. Conroy, P. Tyma, P. H. Daum, and J. E. Erman, Biochim. Biophys. Acta 537, 62 (1978).CrossRefGoogle Scholar
  44. 44.
    C. D. Millis, D. Cai, M. T. Stankovich, and M. Tien, Biochemistry, in press (1989).Google Scholar
  45. 45.
    J. F. Taylor and V. E. Morgan, J. Biol. Chem. 144, 15 (1942).Google Scholar
  46. 46.
    Y. Hayashi and I. Yamazaki, J. Biol. Chem. 254, 9101 (1979).PubMedGoogle Scholar
  47. 47.
    M. A. Ator and P. Ortiz de Montellano, J. Biol. Chem. 262, 1542 (1987).PubMedGoogle Scholar
  48. 48.
    M. A. Ator, S. K. David, and P. Ortiz de Montellano, J. Biol. Chem. 262, 14954 (1987).PubMedGoogle Scholar
  49. 49.
    Y. Z. Zhang, G. J. Zylstra, R. H. Olsen, and C. A. Reddy Biochem. Biophys. Res. Commun. 137,649 (1986). Google Scholar
  50. 50.
    A. Andrawis, E. Pease, I. Kuan, E. Holzbaur, and M. Tien Biochem. Biophys. Res. Commun. 162,673 (1989). Google Scholar
  51. 51.
    D. Pribnow, M. B. Mayfield, V. J. Nipper, J. A. Brown, and M. H. Gold, J. Biol. Chem. 264, 5036 (1989).PubMedGoogle Scholar
  52. 52.
    D. J. Lipman and W. R. Pearson, Science 227, 1435 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    K. G. Welinder, FEBS Leu. 72, 19 (1976).CrossRefGoogle Scholar
  54. 54.
    J. Kaput, S. Goltz, and G. J. Blobel, J. Biol. Chem. 257, 15054 (1982).PubMedGoogle Scholar
  55. 55.
    T. L. Poulos and J. Kraut, J. Biol. Chem. 255, 8199 (1980).PubMedGoogle Scholar
  56. 56.
    A. Neuberger, A. Gottshalk, R. D. Marshal, and R. D. Spiro, in: The Glycoproteins: Their Composition, Structure and Function, Part A ( A. Gottschalk, ed.), p. 450, Elsevier, Amsterdam (1972).Google Scholar
  57. 57.
    N. J. Proudfoot and G. G. Brownbee, Nature 263, 211 (1976).PubMedCrossRefGoogle Scholar
  58. 58.
    T. L. Smith, H. Schalch, J. Gaskell, S. Covert, and D. Cullen, Nucleic Acids Res. 16, 1219 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    A. Brown, P. F. G. Sims, U. Raeder, and P. Broda, Gene 73, 77 (1988).PubMedCrossRefGoogle Scholar
  60. 60.
    Y. Asada, Y. Kimura, M. Kuwahara, A. Tsukamoto, K. Koide, A. Oke, and M. Takanami, Appl. Microbiol. Biotechnol. 29, 469 (1988).CrossRefGoogle Scholar
  61. 61.
    I. Walther, M. Kafiri, J. Reiser, F. Suter, B. Fritsche, M. Saloheimo, M. Leisola, T. Teeri, J. K. C. Knowles, and A. Feichter, Gene 70, 127 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    H. Schalch, J. Gaskell, T. Smith, and D. Cullen, Mol. Cell Biol. 9, 2743 (1989).PubMedGoogle Scholar
  63. 63.
    E. L. F. Holzbaur, A. Andrawis, and M. Tien, Biochem. Biophys. Res. Commun. 155, 626 (1988).CrossRefGoogle Scholar
  64. 64.
    M. Kozak, Nucleic Acids Res. 9, 5233 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    M. Kuwahara, J. K. Glenn, M. A. Morgan, and M. H. Gold, FEBS Lett. 169, 247 (1984).CrossRefGoogle Scholar
  66. 66.
    R. L. Farrell, P. Gelep, A. Anilionis, K. Javaherian, T. E. Maione, and J. R. Rusche, European Patent Application number 87,810, 516. 2.Google Scholar
  67. 67.
    A. Andrawis, E. A. Pease, and M. Tien, in: Biotechnology in Pulp and Paper Manufacturing: Applications and Fundamental Investigation (T. K. Kirk and H.-M. Chang, eds. ), Butterworth Publishers (1989).Google Scholar
  68. 68.
    M. Gribskov and R. R. Burgess, Gene 26, 109 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    T. T. Teeri, P. Lehtovaara, M. Penttila, M. Saloheimo, and J. K. C. Knowles, The Third Chemical Congress of North America, Toronto, Ontario, Canada, June 5 - 11 (1988).Google Scholar
  70. 70.
    M. Alic, J. R. Kornegay, D. Pribnow, and M. H. Gold, Appl. Environ. Microbiol. 55, 406 (1989).PubMedGoogle Scholar
  71. 71.
    T. Randall, T. R. Rao, and C. A. Reddy Biochem. Biophys. Res. Commun. 161,720 (1989). Google Scholar
  72. 72.
    K.-E. Eriksson and T. K. Kirk, in: Comprehensive Biotechnology ( C. L. Cooney and A. E. Humphrey, eds.), Pergamon, Toronto (1985).Google Scholar
  73. 73.
    S. D. Haemmerli, M. S. A. Leisola, and A. Feichter FEMS Microbiol. Lett. 35, 33 (1985). Google Scholar
  74. 74.
    F. Qui, D. Dolphin, T. Wijeseker, R. Farrell, and P. Skerker, in: Biotechnology in Pulp and Paper Manufacturing: Applications and Fundamental Investigation (T. K. Kirk and H.-M. Chang, eds. ), Butterworth Publishers (1989).Google Scholar
  75. 75.
    T. K. Kirk and H.-M. Chang, Enzyme Microb. Technol. 3, 189 (1981).CrossRefGoogle Scholar
  76. 76.
    V.-B. Huynh, H.-M. Chang, and T. W. Joyce, Tappi J. 68, 98 (1985).Google Scholar
  77. 77.
    J. A. Bumpus, M. Tien, D. Wright, and S. D. Aust, Science 228, 1434 (1985).PubMedCrossRefGoogle Scholar
  78. 78.
    D. C. Eaton, Enzyme Microb. Technol. 7, 194 (1985).Google Scholar
  79. 79.
    S. D. Haemmerli, M. S. A. Leisola, D. Sanglard, and A. Fiechter, J. Biol. Chem. 261, 6900 (1986).PubMedGoogle Scholar
  80. 80.
    G. J. Mileski, J. A. Bumpus, M. Jurek, and S. D. Aust, Appl. Environ. Microbiol. 54, 2885 (1988).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Elizabeth A. Pease
    • 1
  • Ming Tien
    • 1
  1. 1.Department of Molecular and Cell BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations