Skip to main content

Heats of Immersion of Hydroxyapatities in Water

  • Chapter
Analytical Calorimetry

Abstract

Heats of immersion have been reported for many polar solids of metal oxides and silicates both in polar and nonpolar liquids. These heats have been determined as a function of outgassing temperatures, specific surface areas, and particle size. Usually they are made on the “bare” sample only. However, with most of the hydrophilic metal oxide surfaces, it is not always known whether the surface was “bare” (i.e. completely dehydroxylated) or had some residual hydroxyl groups still on the surface. How “bare” the surface was, would depend greatly upon the outgassing temperature and pressure at which the sample was prepared. Although the heats measured were relatively insensitive to these factors for a nonpolar liquid such as hexane on silica, titanium dioxide, or alumina1, for a polar molecule such as water on these solids, large and complex changes have been observed . Wade and Hackerman, et al. measured heats of immersion for water on TiO2 3, SiO2 4,5, and on Al2O3 6,7 as a function of the outgassing temperature and specific surface area. Whalen8 and Kiselev, et al.9,10 measured heats of immersion of different silica gel preparations and quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wade, W.H. and Hackerman, Norman, J. Phys. Chem., 66, 1823 (1962).

    Article  CAS  Google Scholar 

  2. Egorov, M.M., Kiselev, V.F., Krasil’Nikov, K.G. and Murina, V.V., Zh. Fiz. Khim., 33, 65 (1959).

    CAS  Google Scholar 

  3. Wade, W.H. and Hackerman, Norman, J. Phys. Chem., 65, l68l (1961).

    Article  Google Scholar 

  4. Wade, W.H., Cole, H.D., Meyer, D.E. and Hackerman, Norman, J. Phys. Chem., 65, 1968 (1961).

    Article  Google Scholar 

  5. Wade, W.H., Every, R.L. and Hackerman, Norman, Advances in Chemistry Series No. 33, Washington, ACS (1961).

    Google Scholar 

  6. Venable, R.L., Wade, W.H. and Hackerman, Norman, J. Phys. Chem., 64, 355 (1960).

    Article  Google Scholar 

  7. Wade, W.H. and Hackerman, Norman, J. Phys. Chem., 64, 1196 (1960).

    Article  CAS  Google Scholar 

  8. Whalen, J.W., Advances in Chemistry Series No. 33, Washington, ACS (1961).

    Google Scholar 

  9. Egarova, T.S., Zarif’yands Yu. A., Kiselev, V.F., Krasill-Nikof, K.G. and Murina, V.V., Russ. J. Phys. Chem., 36, 780 (1962).

    Google Scholar 

  10. Egorov, M.M. and Kiselev, V.F., Russ. J. Phys. Chem., 36, 158 (1962).

    Google Scholar 

  11. Holmes, H.F. and Secoy, C.H., J. Phys. Chem., 69, 151 (1965).

    Article  CAS  Google Scholar 

  12. Holmes, H.F., Fuller, E.L., Jr. and Secoy, C.H., J. Phys. Chem., 70, 436 (1966).

    Article  CAS  Google Scholar 

  13. Fuller, E.L., Jr., Holmes, H.F., Secoy, C.H. and Stuckey, J.E., J. Phys. Chem., 72, 2095 (1968).

    Article  Google Scholar 

  14. Holmes, H.F., Fuller, E.L., Jr. and Secoy, C.H., J. Phys. Chem., 72, 2095 (1968).

    Article  CAS  Google Scholar 

  15. Morimoto, Tetsuo; Shiomi, Koichi and Tanaka, Horoshi, Bull. Chem. Soc. Japan, 37, 392 (1964).

    Article  CAS  Google Scholar 

  16. Morimoto, Tetsuo; Nagao, Mahiko and Hirata, Miyoshi, Kolloid-Z.Z. Polym., 225, 29 (1968).

    Article  CAS  Google Scholar 

  17. Morimoto, Tetsuo; Nagao, Mahiko and Omori, Teiji, Bull. Chem. Soc. Japan, 42, 943 (1969).

    Article  CAS  Google Scholar 

  18. Morimoto, Tetsuo; Katayama, Noriko; Naons, Hiromitu and Nagao, Mahiko, Bull. Chem. Soc. Japan, 42, 1490 (1969).

    Article  CAS  Google Scholar 

  19. Rootare, H.M., Ph.D. Dissertation, Univ. of Mich. (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rootare, H.M., Craig, R.G. (1974). Heats of Immersion of Hydroxyapatities in Water. In: Porter, R.S., Johnson, J.F. (eds) Analytical Calorimetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4509-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4509-2_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4511-5

  • Online ISBN: 978-1-4757-4509-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics