DNA Amplification Techniques

An Overview
  • David H. Sorscher
Part of the Pathology and Laboratory Medicine book series (PLM)


The polymerase chain reaction (PCR) has revolutionized modern science. With the introduction of the PCR to the clinical laboratory, genetically based diseases are now diagnosed with an incredible level of sensitivity and accuracy. This chapter will review the original discovery of the PCR in which the synthetic cycles were driven by the Klenow firagment of DNA polymerase I, and the rapid development of this exciting technology after the introduction of the heat-resistant Thermus aquaticus (Taq) polymerase.


Polymerase Chain Reaction Capture Probe Duchenne Muscular Dystrophy Nucleic Acid Sequence Base Amplification Ligase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K., Horn, G., Erlich, H., and Arnheim, N. Enzymatic amplification of β-globin genomic sequences and restriction site analysis of sickle cell anemia. Science 230:1350–1354, 1985.Google Scholar
  2. 2.
    Mullis, K. B. and Faloona, F. A. Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Methods Enzymol. 155:335–350, 1987.Google Scholar
  3. 3.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Science 239:487–491, 1988.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, E., Thor, A., He, M., Barcos, M., Ljung, B. M., and Benz, C. The Her2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 7:1027–1032, 1992.Google Scholar
  5. 5.
    Kawasaki, E., Saiki, R., and Erlich, H. Genetic analysis using polymerase chain reactionamplified DNA and immobilized oligonucleotide probes: reverse dot-blot typing. Methods Enzymol. 218:369–381, 1993.PubMedCrossRefGoogle Scholar
  6. 6.
    Castilla, L. H., Couch, F. J., Erdos, M. R., Hoskins, K. F., Calzone, K., Garber, J. E., Boyd, J., Lubin, M. B., Deshano, M. L., Brody, L. D., et al. Mutations in the BRCA 1 gene in families with early-onset breast and ovarian cancer. Nature Genet. 8:387–391, 1994.Google Scholar
  7. 7.
    Mills, N. E., Fishman, C. L., Rom, W. N., Dubin, N., and Jacobson, D. R. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res. 55:1444–1447, 1995.Google Scholar
  8. 8.
    Tada, M., Omata, M., Kawai, S., Saisho, H., Ohto, M., Saiki, R. K., and Sninsky, J. J. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res. 53:2472–2474, 1993.PubMedGoogle Scholar
  9. 9.
    Bertram, S., Hufert, F. T., Neumann-Haefelin, D., and von Laer, D. Detection of DNA in single cells using an automated cell deposition unit and PCR. Biotechniques 19:616–620, 1995.PubMedGoogle Scholar
  10. 10.
    Kristjansson, K., Chong, S. S., Van den Veyver, I. B., Subramanian, S., Snabes, M. C., and Hughes, M. R. Preimplantation single cell analyses of Dystrophin gene deletions using whole genome amplification. Nature Genet. 6:19–23, 1994.Google Scholar
  11. 11.
    Chien, A., Edgar, D. B., and Trela, J. M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus Aquaticus. J. Bacteriol. 127:1550–1557, 1976.Google Scholar
  12. 12.
    Guyer, R. L. and Koshland, D. E. The molecule of the year. Science 246:1543–1544, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Barnes, W. M. PCR amplification of up to 35 kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc. Natl. Acad. Sci. USA 91:2216–2220, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91:5695–5699, 1994.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckert, K. A. and Kunkel, T. A. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1:17–24, 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (Eds). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.Google Scholar
  17. 17.
    Landre, P. A., Gelfand, D. H., and Watson, R. M. The use of cosolvents to enhance amplification by the polymerase chain reaction, in PCR Strategies, Innis, M. A. and Gelfand, D. H., eds., Academic, San Diego, CA, pp. 3–16, 1995.Google Scholar
  18. 18.
    Madonna, J. PCR Laboratory, Roche Diagnostic Systems, Branchburg, NJ, pp. 1–8, 1993.Google Scholar
  19. 19.
    Saiki, R. K. Amplification of genomic DNA, in PCR Protocols, Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds., Academic, San Diego, CA, pp. 13–20, 1990.Google Scholar
  20. 20.
    Retzel, E., Staskus, K. A., Embretson, J. E., and Haase, A. T. The in situ PCR: amplification and detection of DNA in a cellular context, in PCR Strategies, Innis, M. A. and Gelfand, D. H., eds., Academic, San Diego, CA, pp. 199–212, 1995.Google Scholar
  21. 21.
    Chehab, F. F., Wall, J., and Cai, S.-P. Analysis of PCR products by covalent reverse dot blot hybridization, in PCR Strategies, Innis, M. A. and Gelfand, D. H., eds., Academic, San Diego, CA, pp. 130–139, 1995.Google Scholar
  22. 22.
    Barany, F. (1991) Genetic disease detection and DNA amplifiication using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88:189–193, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Bassiri, M., Hu, H. Y., Domeika, M. A., Burczak, J., Svensson, L. O., Lee, H. H., and Mardh, P. A. Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction. J. Clin. Microbiol. 33:898–900, 1995.PubMedGoogle Scholar
  24. 24.
    Smith, K. R., Ching, S., Lee, H., Ohhashi, Y., Hu, H. Y., Fisher, H. C., and Hook, E. W. Evaluation of ligase chain reaction for use with urine for identification of Neisseria gonorrhoeae in females attending a sexually transmitted disease clinic. J. Clin. Microbiol. 33:455–457, 1995.PubMedGoogle Scholar
  25. 25.
    Weidmann, M., Barany, F., and Batt, C. A. Detection of Listeria monocytogenes by PCRcoupled ligase chain reaction, in PCR Strategies, Innis, M. A. and Gelfand, D. H., eds., Academic, San Diego, CA, pp. 347–361, 1995.Google Scholar
  26. 26.
    Quinn, T. C. Recent advances in diagnosis of sexually transmitted diseases. Sexually Transmitted Dis. 21: S 19-S27, 1994.Google Scholar
  27. 27.
    van Gemen, B., Wiel, P. V. D., van Beuningen, R., Sillekens, P., Kirroaams. S., Dries, C., Schoones, R., and Kievits, T. The one-tube quantitative HIV-1 RNA NASBA: precision, accuracy, and application. PCR Methods Appl. 4:S 177–S 184, 1995.Google Scholar
  28. 28.
    Kwoh, D. Y., Davis, G. R., Whitfield, K. M., Chappelle, H. L., DiMichelle, L. J., and Gingeras, T. R. Transcription-based amplification system and detection of amplifiied human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl. Acad. Sci. USA 86:1173–1177, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Carlowicz, M. Rapid tuberculosis assay under expedited FDA review. Clin. Lab. News July 1–4, 1995.Google Scholar
  30. 30.
    Urdea, M. S. Branched DNA signal amplification. Does bDNA represent post-PCR amplification technology? Biotechnology 12:926–927, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilber, J. C. Direct quantification of viral nucleic acids using branched DNA (bDNA) signal amplification: methodology and studies on monitoring chronic viral infections. Clin. Immunol. Newsletter 15:57–61, 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • David H. Sorscher

There are no affiliations available

Personalised recommendations