Skip to main content

An Overview of Nucleic Acid Chemistry, Structure, and Function

The Foundations of Molecular Biology

  • Chapter
Molecular Diagnostics

Part of the book series: Pathology and Laboratory Medicine ((PLM))

  • 269 Accesses

Abstract

Chemists and early biochemists determined the essential building blocks of living cells and characterized their chemical nature. Among these building blocks were nucleic acids, long-chain polymers composed of nucleotides. Nucleic acids were named based partly on their chemical properties and partly on the observation that they represented a major constituent of the cell nucleus. That nucleic acids form the chemical basis for the transmission of genetic traits was not realized until about 50 years ago (1). Prior to that time, there was considerable disagreement among scientists concerning whether genetic information was contained in and transmitted by proteins or nucleic acids. It was recognized that chromosomes contained deoxyribonucleic acid (DNA) as a primary constituent, but it was not known if this DNA carried genetic information or merely served as a scaffold for some undiscovered class of proteins that carried genetic information. However, the demonstration that genetic traits could be transmitted through DNA formed the basis for numerous investigations focused on elucidation of the nature of the genetic code. During the last half-century, numerous investigators have participated in the scientific revolution leading to modern molecular biology. Of particular significance were the elucidation of the structure of DNA (2,3) determination of structure/function relationships between DNA and RNA (4) and acquisition of basic insights into the processes of DNA replication, RNA transcription, and protein synthesis (5–7). Molecular pathology represents the application of the principles of basic molecular biology to the investigation of human disease processes. Our ever broadening insights into the molecular basis of disease processes continues to provide an opportunity for the clinical laboratory to develop and implement new and novel approaches for diagnostic and prognostic assessment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avery, O. T., MacLeod, C. M., and McCarty, M. Studies on the chemical nature of the substance inducing transformation of Pneumococcus rypes. J. Exp. Med. 79:137–158, 1944.

    Article  PubMed  CAS  Google Scholar 

  2. Watson, J. D. and Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738, 1953.

    Article  PubMed  CAS  Google Scholar 

  3. Wilkins, M. H. F., Stokes, A. R., and Wilson, H. R. Molecular structure of deoxypentose nucleic acid. Nature 171:738–740, 1953.

    Article  PubMed  CAS  Google Scholar 

  4. Watson, J. D. and Crick, F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature 171:738–740, 1953.

    Article  Google Scholar 

  5. Coverly, D. and Laskey, R. A. Regulation of eukaryotic DNA replication. Ann. Rev. Biochem. 63:745–776, 1994.

    Article  Google Scholar 

  6. Kornberg, R. D. and Lorch, Y. Chromatin structure and transcription. Ann. Rev. Cell Biol. 8:563–587, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Kozak, M. Regulation of translation in eukaryotic systems. Ann. Rev. Cell Biol. 8:197–225, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Crick, F. H. C. On protein synthesis. Symp. Soc. Exp. Biol. 12:548–555, 1958.

    Google Scholar 

  9. Chargaff, E., Vischer, E., Doniger, R., Green, C., and Misani, F. The composition of the desoxypentose nucleic acids of thymus and spleen. J.. Biol. Chem. 177:405–416, 1949.

    CAS  Google Scholar 

  10. Chargaff, E. Structure and function of nucleic acids as cell constituents. Fed. Proc. 10:654–659, 1951.

    PubMed  CAS  Google Scholar 

  11. Crick, F. H. C. and Watson, J. D. The complementary structure of deoxyribonucleic acid. Proc. Royal Soc. A. 223:80–96, 1954.

    Article  CAS  Google Scholar 

  12. Dickerson, R. E., Drew, H. R., Conner, B. N., Wing, R. M., Fratini, A. V., and Kopka, M. L. The anatomy of A-, B-, and Z-DNA. Science 216:475–485, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Small, D., Nelkin, B., and Vogelstein, B. Nonrandom distribution of repeated DNA sequences with respect to supercoiled loops and the nuclear matrix. Proc. Natl. Acad. Sci. USA 79:5911–5915, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Tsongalis, G. J., Coleman, W. B., Smith, G. J., and Kaufman, D. G. Partial characterization of nuclear matrix attachment regions from human fibroblast DNA using Alu-poly-merase chain reaction. Cancer Res. 52:3807–3810, 1992.

    PubMed  CAS  Google Scholar 

  15. Jelinek, W. R. Repetitive sequences in eukaryotic DNA and their expression. Ann. Rev. Biochem. 51:813–844, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Meselson, M. and Stahl, F. W. The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 44: 671–682, 1958.

    Article  CAS  Google Scholar 

  17. West, S. C. Enzymes and molecular mechanisms of genetic recombination. Ann. Rev. Biochem. 61:603–640, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Friedberg, E. C. DNA Repair. Freeman, New York, 1985.

    Google Scholar 

  19. Sancar, A. and Sancar, G. B. DNA repair enzymes. Ann. Rev. Biochem. 57:29–67, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Cech, T. R. Self-splicing of group I introns. Ann. Rev. Biochem. 59:543–568, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Sharp, P. A. Splicing of messenger RNA precursors. Science 235:766–771, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S., and Sharp, P. A. Splicing of messenger RNA precursors. Ann. Rev. Biochem. 55:1119–1150, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Mattaj, I. W., Tollervey, D., and Seraphin, B. Small nuclear RNAs in messenger RNA and ribosomal RNA processing. FASEB J.. 7:47–53, 1993.

    Google Scholar 

  25. Blum, B., Bakalara, N., and Simpson, L. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189–198, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Schimmel, P., and de Pouplana, L. R. Transfer RNA: from minihelix to genetic code. Cell 81:983–986, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Noller, H. F. The structure of ribosomal RNA. Ann. Rev. Biochem. 53:119–162, 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Shen, L. X., Cai, Z., and Tinoco, I., Jr. RNA structure at high resolution. FASEB J. 9:1023–1033, 1995.

    PubMed  CAS  Google Scholar 

  29. Drake, J. W., and Balz, R. H. The biochemistry of mutagenesis. Ann. Rev. Biochem. 45:11–37, 1976.

    Google Scholar 

  30. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362:709–715, 1993

    Article  PubMed  CAS  Google Scholar 

  31. Ames, B. N., Shigenagan, M. K., and Gold, L. S.DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ. Health Perspect. Suppl. 101: 35–44, 1993.

    CAS  Google Scholar 

  32. Cooper, D. N. and Youssoufian, H.The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151–155, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Rideout, W. M., Coetzee, G. A., Olumi, A. F. and Jones, P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Jones, P. A., Buckley, J. D., Henderson, B. E., Ross, R. K. and Pike, M. C. From gene to carcinogen: a rapidly evolving field in molecular epidemiology. Cancer Res. 51:3617–3620, 1991.

    PubMed  CAS  Google Scholar 

  35. Bishop, M. Molecular themes in oncogenesis. Cell 64:235–248, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Coleman, W. B., and Tsongalis, G. J. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clin. Chem. 41:644–657, 1995.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coleman, W.B. (1997). An Overview of Nucleic Acid Chemistry, Structure, and Function. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2588-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2588-9_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2590-2

  • Online ISBN: 978-1-4757-2588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics