Skip to main content

Molecular Pathogenesis of Cardiovascular Disease

  • Chapter
Molecular Diagnostics

Part of the book series: Pathology and Laboratory Medicine ((PLM))

  • 268 Accesses

Abstract

Cardiovascular disease (CVD) is a major public health problem in many societies. Several types of CVD have a genetic basis or at least a genetic component. It has been estimated that about 50% of the variability of the major risk factors for coronary artery disease (CAD) is genetic. Environmental factors, such as diet, also influence CVD, and may in fact interact with genetic factors to modulate risk. The genes encoding the majority of structural and enzymatic proteins involved in lipid and lipoprotein metabolism have been cloned and characterized, permitting the use of molecular biology techniques to further our understanding of lipid and lipoprotein disorders. Coagulation factors have been implicated in thrombosis and thrombolysis, and a number of mutations and polymorphisms have been described that predispose to vascular disease. The focus of this chapter is to discuss these genetic factors related to atherosclerosis and hemostasis. The laboratory currently plays an important role in the battle against CVD by providing accurate and reliable measurement of lipids, lipoprotein cholesterols, and coagulation factors. With these important new discoveries, it is evident that the laboratory of the future will play a major role in screening, diagnosis, and treatment of familial lipoprotein abnormalities and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudet, A. L., Scriver, C. R., Sly, W. S., Valle, D., Cooper, D. N., McKusick, V. A., and Schmidke, J. Genetics and biochemistry of variant human phenotypes, in The Metabolic Basis of Inherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., eds., McGraw Hill, New York, pp. 3–53, 1989.

    Google Scholar 

  2. Bazunga, M. The use of angiotensin converting enzyme inhibitors in asymptomatic patients with left ventricular dysfunction after myocardial infarction. Conn. Med. 59:663–666, 1995.

    Google Scholar 

  3. Brunzell, J. D. Familial lipoprotein lipase deficiency and other causes of the chylo-micronemia syndrome, in The Metabolic Basis ofInherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., eds., McGraw Hill, New York, pp. 1165–1180, 1989.

    Google Scholar 

  4. Schaefer, E. J. Familial lipoprotein disorders and premature coronary artery disease. Med. Clin. North Am. 78:21–39, 1994.

    PubMed  CAS  Google Scholar 

  5. Brown, M. S. and Goldstein, J. L. A receptor-mediated pathway for cholesterol homeosta-sis. Science 232:34–47, 1986.

    Google Scholar 

  6. Genest, J. J., Jr., Martin-Munley, S. S., McNamara, J. R., Ordovas, J. M., Jenner, J., Myers, R. H., Silberman, S. R., Wilson, P. W. F., Salem, D. N., and Schaefer, E. J. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85:2025–2033, 1992.

    Article  PubMed  Google Scholar 

  7. Knecht, T. P. and Glass, C. K. The influence of molecular biology on our understanding of lipoprotein metabolism and the pathobiology of atherosclerosis. Ad. Genet. 32:141–198, 1995.

    Google Scholar 

  8. Kane, J. P. and Havel, R. J. Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoprotein, in The Metabolic Basis ofInherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds., McGraw Hill, New York, pp. 1139–1164, 1989.

    Google Scholar 

  9. Austin, M. A., Breslow, J. L., Hennekens, C. H, Buring, J. E., Willett, W. C., and Krauss, R. M. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921, 1988.

    Article  PubMed  CAS  Google Scholar 

  10. Breslow, J. L. Familial disorders of high density lipoprotein metabolism, in The Meta-bolic Basis ofInherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds., McGraw Hill, 1989.

    Google Scholar 

  11. Assman, G., Schmitz, G., and Brewer, H. B., Jr. Familial high density lipoprotein defi-ciency, in The Metabolic Basis ofInherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds. McGraw Hill, New York, pp. 1251–1266, 1989.

    Google Scholar 

  12. Mahley, R. W. and Rall, S. C., Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism, in The Meta-bolic Basis ofInherited Disease, Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds., McGraw Hill, New York, pp. 1267–1282, 1989.

    Google Scholar 

  13. Contois, J. H., Anamani, D. E., and Tsongalis, G. J. The underlying molecular mechanism od apolipoprotein E polymorphism: relationships to lipid disorders, cardiovascular dis-ease, and Alzheimer’ s disease. Clin. Lab. Med. 16:105–123, 1996.

    Google Scholar 

  14. Rosenberg, R. D. and Aird, W. C. Thrombosis, in Molecular Cardiovascular Medicine, Haber, E., ed., Scientific American, New York, pp. 115–132, 1995.

    Google Scholar 

  15. Tuddenham, E. G. D. and Cooper, D. N. The Molecular Genetics ofHaemostasis and its Inherited Disorders, section V. Oxford University Press, 1994.

    Google Scholar 

  16. Green, F. and Humphries, S. E. Genetic determinants of arterial thrombosis. Baillière’ s Clin. Haemotol. 7:675–692, 1994.

    Article  CAS  Google Scholar 

  17. Cooper, D. N. The molecular genetics of familial venous thrombosis. Baillière’ s Clin. Haematol. 7:637–673, 1994.

    Article  CAS  Google Scholar 

  18. Dahlbäck B. Inherited thrombophilia: resistance to activated protein C as a pathogenic factor of venous thromboembolism. Blood 85:607–614, 1995.

    Google Scholar 

  19. Bertina, R. M., Koeleman, B. P. C., Koster, T., Rosendaal, F. R., Driven, R. J., deRonde, H., van der Velden, P. A., and Reitsma, P. H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67, 1995.

    Article  Google Scholar 

  20. Dahlbäck B. Molecular genetics of thrombophilia: factor V gene mutation causing resis-tance to activated protein C as a basis of the hypercoagulable state. J. Lab. Clin. Med. 125:566–571. 1995.

    PubMed  Google Scholar 

  21. Rosendaal, F. R., Koster, T., Vandenbroucke, J. P., and Reitsma, P. H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85:1504–1508, 1995.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Contois, J.H., Huang, J.C. (1997). Molecular Pathogenesis of Cardiovascular Disease. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2588-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2588-9_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2590-2

  • Online ISBN: 978-1-4757-2588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics