Skip to main content

Cyclosporine A-induced Lipid Peroxidation in Rat Renal Microsomes and Effect on Glucose Uptake by Renal Brush Border Membrane Vesicles

  • Chapter
Nephrotoxicity

Abstract

Nephrotoxicity is the most important side effect of cyclosporine A (CsA) treatment and has been well documented in patients and experimental animals (1). The nature of CsA-induced renal damage is complex and the precise mechanism is still unclear. Some possible pathogenetic mechanisms have already been investigated. There is convincing evidence that a direct CsA effect on tubular cell could also contribute to CsA nephrotoxicity (2). CsA is taken up by isolated proximal tubule segments in a rapid, time-dependent and saturable manner (3). A saturable binding of CsA to isolated rat renal brush border membranes was also shown. This binding may be best explained by a partitioning process of the lipophilic CsA into the phospholipid phase of the cell membrane rather than binding to a specific membrane component. These findings demonstrate that CsA has the ability to interact with renal tubular cell membranes, even at low concentrations, and therefore has a distinct potential for toxic effects on renal cells. The aim of the present study was to investigate in vitro whether or not CsA induces lipid peroxidation in isolated rat renal microsomes and moreover to evaluate the influence of CsA on glucose uptake by rat renal brush border membrane vesicles. To the best of our knowledge there appeared only one report regarding to CsA-induced nephrotoxicity and lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Y. Calne, S. Thiru, P. McMaster, G. N. Craddock, D. J. G. White, D. B. Evans, D. C. Dunn, B. D. Pentlow and K. Rolles, Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet, 2: 1323 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. C. Cunningham, M. Gavin, P. H. Whiting, M. D. Burke, F. Macintyre, A. W. Thomson and J. G. Simpson, Serum cyclosporin levels, hepatic drug metabolism and renal tubulotoxicity. Biochem. Pharmacol., 33: 2857 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. N. M. Jackson, R. P. O’Connor and H. D. Humes, Cyclosporine (Cs) interactions with renal proximal tubule cells (PTC) and subcellular membranes. Clin. Res., 33: 487A (1985).

    Google Scholar 

  4. Y. Aso, A. Tajima, K. Suzuki, Y. Ohtawara, N. Ohta, M. Hata and T. Tsukada, Nephrotoxicity in rats receiving cyclosporine. Biochemical and morphological study. Nippon Hinyokika Gakkai Zasshi, 76: 1454 (1985).

    PubMed  CAS  Google Scholar 

  5. B. Ryffel, P. Donatsch, M. Madorin, B. E. Matter, G. Ruttimann, H. Schon, R. Stoll and J. Wilson, Toxicological evaluation of cyclosporin A. Arch. Toxicol., 53: 107 (1983).

    PubMed  CAS  Google Scholar 

  6. T. Bertani, N. Perico, M. Abbate, C. Battaglia and G. Remuzzi, Renal injury induced by long-term administration of cyclosporin A to rats. Am. J. Pathol., 127: 569 (1987).

    PubMed  CAS  Google Scholar 

  7. C. De Duve, B. C. Pressman, R. Gianetto, R. Wattiaux and F. Appelmans, Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J., 60: 604 (1955).

    Google Scholar 

  8. B. Sedgwick and G. Hubscher, Metabolism of Phospholipids IX. Phosphatidate phosphohydrolase in rat liver. Biochim. Biophys. Acta, 106: 63 (1965).

    Article  PubMed  CAS  Google Scholar 

  9. J. A. Buege and S. D. Aust, Microsomal lipid peroxidation. Methods Enzvmol., 52: 302 (1978).

    Article  CAS  Google Scholar 

  10. C. Cojocel, K. H. Laeschke, G. Inselmann and K. Baumann, Inhibition of cephaloridine-induced lipid peroxidation. Toxicology, 35: 295 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. R. J. Cross and J. V. Taggart, Renal tubular transport. Accumulation of p-aminohippurate by rabbit kidney slices. Am. J. Physiol., 161: 181 (1950).

    PubMed  CAS  Google Scholar 

  12. J. Bibez, B. Stieger, W. Haase and H. Murer, A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim. Biophys. Acta, 647: 169 (1981).

    Article  Google Scholar 

  13. M. E. Blank, F. Bode, E. Huland, D. F. Diedrich and K. Baumann, Kinetic studies of D-glucose transport in renal brush border membrane vesicles of streptozotocin-induced diabetic rats. Biochim. Biophys. Acta, 844: 314 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. P. H. Whiting, A. W. Thomson, J. T. Blair and J. G. Simpson, Experimental cyclosporine A nephrotoxicity. Br. J. Exp. Path., 63: 88 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Inselmann, G., Blank, M., Baumann, K. (1989). Cyclosporine A-induced Lipid Peroxidation in Rat Renal Microsomes and Effect on Glucose Uptake by Renal Brush Border Membrane Vesicles. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2040-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2040-2_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2042-6

  • Online ISBN: 978-1-4757-2040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics