Advertisement

Effects of Allopurinol and Oxipurinol on Pyrimidine Biosynthesis in Man

  • T. D. Beardmore
  • W. N. Kelley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 41 B)

Abstract

The final steps of pyrimidine biosynthesis de novo which are catalyzed by two sequential enzymes, orotate phosphoribosyltransferase (OPRT) and orotidylic decarboxylase (ODC), involve the PP-ribose-P dependent conversion of orotic acid to orotidine-5′-monophosphate (OMP) followed by decarboxylation at the 7 position to form uridine 5′-monophosphate (UMP) (Fig. 1). UMP is then utilized further in the synthesis of nucleic acids and co-enzymes. Defects at this site in this metabolic pathway are important for they can result in “pyrimidine starvation” from depletion of the intracellular pool of pyrimidine nucleotides. In man the rare genetic disease, orotic aciduria, involves a deficiency of both OPRT and ODC (Type 1) (Smith, Sullivan and Huguley, 1961) or, less commonly, only ODC (Type II) (Fox, O’Sullivan and Firken, 1969). The resultant clinical state is characterized by failure of growth and development, megaloblastic anemia, and the increased urinary excretion of orotic acid (Types I and II) and orotidine (Type II).

Keywords

Xanthine Oxidase Megaloblastic Anemia Orotic Acid Pyrimidine Metabolism Pyrimidine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beardmore, T. D., Fox, I. H. and Kelley, W. N. 1970. Effect of allopurinol on pyrimidine metabolism in the Lesch-Nyhan syndrome. Lancet 2: 830–831.PubMedCrossRefGoogle Scholar
  2. Beardmore, T. D. and Kelley, W. N. 1971. Mechanism of allopurinol mediated inhibition of pyrimidine biosynthesis. J. Lab. Clin. Med. 78: 696–704.PubMedGoogle Scholar
  3. Beardmore, T. D., Cashman, J. and Kelley, W. N. 1972. Mechanism of allopurinol mediated increase in enzyme activity in man. J. Clin. Invest. 51: 1823–1832.PubMedCrossRefGoogle Scholar
  4. Brown, G. K., Fox, R. M., O’Sullivan, W. J. 1972. Alteration of quaternary structural behavior of an hepatic orotate phohsphoribosyltransferase-orotidine-5-phosphate decarboxylase complex in rats following allopurinol therapy. Biochem Pharma. 21: 2469–2477.CrossRefGoogle Scholar
  5. Fallon, H. J., Frei, E., Block, J. and Seegmiller, J. E. 1961. The uricosuric and orotic aciduria induced by 6-azauridine. J. Clin. Invest. 40: 1906–1914.PubMedCrossRefGoogle Scholar
  6. Feigelson, P., Davidson, J. D. and Robins, R. K. 1957. Pyrazolopyrimidines as inhibitors and substrates of xanthine oxidase. J. Biol. Chem. 226: 993–1000.PubMedGoogle Scholar
  7. Fox, R. M., O’Sullivan, W. J. and Firken, B. G. 1969. Orotic aciduria differing enzyme patterns. Amer. J. Med. 47: 332–336.PubMedCrossRefGoogle Scholar
  8. Fox, R. M., Royse-Smith, D. and O’Sullivan, W. J. 1970. Orotidinuria induced by allopurinol. Science 168: 861–864.PubMedCrossRefGoogle Scholar
  9. Fox, R. M., Wood, M. H. and O’Sullivan, W. J. 1971. Studies on the coordinate activity and lability of orotidylate phosphoribosyltransferase and decarboxylase in human erythrocytes and the effects of allopurinol administration. J. Clin. Invest. 50: 1050–1060.PubMedCrossRefGoogle Scholar
  10. Handschumacher, R. E. 1960. Orotidylic acid decarboxylase: Inhibition studies with azauridine 5′-phosphate. J. Biol. Chem. 235: 2917–2919.PubMedGoogle Scholar
  11. Kelley, W. N., Rosenbloom, F. M., Henderson, J. F. and Seegmiller, J. E. 1967. Xanthine phosphoribosyltransferase in man: Relationship to hypoxanthine-guanine phosphoribosyltransferase. Biochem. Biophys. Res. Commun. 28 340–345.PubMedCrossRefGoogle Scholar
  12. Kelley, W. N. and Beardmore, T. D. 1970. Allopurinol: Alteration in pyrimidine metabolism in man. Science 169: 388–390.PubMedCrossRefGoogle Scholar
  13. Kelley, W. N., Beardmore, T. D., Fox, I. H. and Meade, J. C. 1971. Effect of allopurinol and oxipurinol on pyrimidine synthesis in cultured human fibroblasts. Biochem. Pharmacol. 20: 1471–1478.PubMedCrossRefGoogle Scholar
  14. Krooth, R. S. 1971. Molecular models for pharmacological tolerance and addiction. Ann. N. Y. Acad. Sci. 179: 548–560.PubMedCrossRefGoogle Scholar
  15. Rundles, R. W., Metz, E. N. and Silberman, H. R. 1966. Allopurinol in the treatment of gout. Ann. Intern. Med. 64: 229–258.PubMedCrossRefGoogle Scholar
  16. Smith, L. H., Jr., Sullivan, M. and Huguley, C. M., Jr. 1961. Pyrimidine metabolism in man. The enzymatic defect of orotic aciduria. J. Clin. Invest. 40: 656–664.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • T. D. Beardmore
    • 1
    • 2
  • W. N. Kelley
    • 1
    • 2
  1. 1.Hahnemann Medical CollegePhiladelphiaUSA
  2. 2.Duke University Medical CenterDurhamUSA

Personalised recommendations