Skip to main content

Structural Studies of Superionic Conduction

  • Chapter
EXAFS Spectroscopy

Abstract

EXAFS data on the normal and superionic phases of AgI and the cuprous halides have been analyzed using four structural models: harmonic oscillator, displaced site, anharmonic oscillator, and excluded volume. The most satisfactory description is obtained with the last model, based upon a softened hard-sphere pair potential. The results indicate that the tetrahedral locations in the halogen lattice are preferred by the mobile cations, but that at elevated temperatures substantial cation density also occurs at bridging trigonal sites, yielding the conduction path. Potential energy barrier heights are obtained. Finally, by modeling the conducting cations as a Boltzmann gas in the presence of the potential deduced from the EXAFS data, the temperature-dependent DC ionic conductivity is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Several review articles have appeared recently: (a) Solid Electrolytes, ed. S. Geller, Vol. 21 of Topics in Applied Physics, Springer-Verlag, Berlin (1977);

    Google Scholar 

  2. Solid Electrolytes: General Principles, Characterization, Materials, Applications, ed. P. Hagenmuller and W. von Gool, Academic Press, New York (1977);

    Google Scholar 

  3. J. B. Boyce and B. A. Huberman, “Superionic Conductors: Transitions, Structures, Dynamics,” Phys. Reports 51, 189 (1979);

    Article  Google Scholar 

  4. Physics of Superionic Conductors, ed. M. B. Salamon, Vol 15 of Topics in Current Physics, Springer-Verlag, Berlin (1979);

    Google Scholar 

  5. Fast Ion Transport in solids, ed. P. Vashishta, J. N. Mundy, and G. K. Shenoy, North-Holland, New York (1979).

    Google Scholar 

  6. L. W. Strock, Z. Phys. Chem. Abt. B 25, 411 (1934).

    Google Scholar 

  7. L. W. Strock, Z. Phys. Chem. Abt. B 31, 132 (1936).

    Google Scholar 

  8. S. Hoshino, J. Phys. Soc. Japan 12, 315 (1957).

    Article  Google Scholar 

  9. G. Burley, J. Chem. Phys. 38, 2807 (1963).

    Article  Google Scholar 

  10. W. Buhrer and W. Halg, Helv. Phys. Acta 47, 27 (1974).

    Google Scholar 

  11. A. F. Wright and B. E. F. Fender, J. Phys. C 10, 2261 (1977).

    Article  Google Scholar 

  12. G. Eckold, K. Funke, J. Kalus, and R. E. Lechner, J. Phys. Chem. Solids 37, 1097 (1976), and references contained therein.

    Article  Google Scholar 

  13. J. B. Boyce, T. M. Hayes, W. Stutius, and J. C. Mikkelsen, Jr., Phys. Rev. Lett. 38, 1362 (1977).

    Article  Google Scholar 

  14. R. J. Cava, F. Reidinger, and B. J. Wuensch, Solid State Comm. 24, 411 (1977).

    Article  Google Scholar 

  15. M. Suzuki and H. Okazaki, Phys. Stat. Sol. (a) 42, 133 (1977).

    Article  Google Scholar 

  16. S. Hoshino, T. Sakuma, and Y. Fujii, Solid State Comm. 22, 763 (1977).

    Article  Google Scholar 

  17. J. B. Boyce and J. C. Mikkelsen, Jr., Solid State Comm. 31, 741 (1979).

    Article  Google Scholar 

  18. For a discussion of the various types of transitions and a list of materials in each category, see Ref. lc.

    Google Scholar 

  19. M. O’Keeffe and B. G. Hyde, Phil. Mag. 33, 219 (1976) and references therein.

    Article  Google Scholar 

  20. B. A. Huberman, Phys. Rev. Lett. 32, 1000 (1974).

    Article  Google Scholar 

  21. H. Hoshino and M. Shimoji, J. Phys. Chem. Solids 35, 321 (1974).

    Article  Google Scholar 

  22. A. Kvist and A. M. Josefson, Z. Naturforsch 23A, 625 (1968);

    Google Scholar 

  23. H. Hoshino, S. Makino and M. Shimoji, J. Phys. Chem. Solids 35, 667 (1974);

    Article  Google Scholar 

  24. R. N. Schock and E. Hinze, J. Phys. Chem. Solids 36, 713 (1975);

    Article  Google Scholar 

  25. P. C. Allen and D. Lazarus, Phys. Rev. B 17, 1913 (1978).

    Article  Google Scholar 

  26. J. B. Wagner and C. Wagner, J. Chem. Phys. 26, 1597 (1957) and references contained therein.

    Article  Google Scholar 

  27. T. Jow and J. B. Wagner, J. Electrochem. Soc. 125, 613 (1978).

    Article  Google Scholar 

  28. For a discussion of EXAFS and applications to superionic conductors see J. B. Boyce and T. M. Hayes, “Structure and Its Influence on Superionic Conduction: EXAFS Studies”, Chapter 2 of Ref. 1d.

    Google Scholar 

  29. For a discussion of EXAFS with references to earlier work see the review by T. M. Hayes, J. Non-Cryst. Solids 31, 57 (1978).

    Article  Google Scholar 

  30. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, third ed., Clarendon Press, Oxford, 1965, p. 562.

    Google Scholar 

  31. T. M. Hayes, P. N. Sen, and S. H. Hunter, J. Phys. C 9, 4357 (1976).

    Article  Google Scholar 

  32. B.-K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815 (1979).

    Article  Google Scholar 

  33. P. H. Citrin, P. Eisenberger and B. M. Kincaid, Phys. Rev. Lett. 36, 1346 (1976).

    Article  Google Scholar 

  34. S. Miyake, S. Hoshino, and T. Takenaka, J. Phys. Soc. Japan 7, 19 (1952).

    Article  Google Scholar 

  35. W. Buhrer and W. Halg, Electrochim. Acta 22, 701 (1977).

    Article  Google Scholar 

  36. J. B. Boyce, T. M. Hayes, J. C., Mikkelsen Jr., and W. Stutius, Solid State Comm. 33, 183 (1980).

    Article  Google Scholar 

  37. S. Hoshino, J. Phys. Soc. Japan 7, 560 (1952).

    Article  Google Scholar 

  38. J. B. Boyce, T. M. Hayes, and J. C. Mikkelsen, Jr., Solid State Comm. (in press).

    Google Scholar 

  39. M. Sakata, S. Hoshino and J. Harada, Acta Cryst. A 30, 655 (1974).

    Article  Google Scholar 

  40. J. Schreurs, M. H. Mueller, and L. H. Schwartz, Acta Cryst. A 32, 618 (1976).

    Article  Google Scholar 

  41. T. M. Hayes, J. B. Boyce, and J. L. Beeby, J. Phys. C 11, 2931 (1978).

    Article  Google Scholar 

  42. For a review of the molecular dynamics work, see the papers in Ref. le by A. Rahman, p. 643; W. Schommers, p. 625; and P. Vashishta and A. Rahman, p. 527.

    Google Scholar 

  43. W. H. Flygare and R. A. Huggins, J. Phys. Chem. Solids 34, 1199 (1973).

    Article  Google Scholar 

  44. T. Matsubara, J. Phys. Soc. Japan 38, 1076 (1975).

    Article  Google Scholar 

  45. J. Harada, H. Suzuki, and S. Hoshino, J. Phys. Soc. Japan 41, 1707 (1976).

    Article  Google Scholar 

  46. V. Valvoda and J. Jecny, Phys. Stat. Sol. (a) 45, 269 (1978).

    Article  Google Scholar 

  47. L. V. Azaroff, J. Appl. Phys. 32, 1658 (1961).

    Article  Google Scholar 

  48. B. Bunker, private communication.

    Google Scholar 

  49. J. B. Boyce and B. A. Huberman, Solid State Comm. 21, 31 (1977).

    Article  Google Scholar 

  50. W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York, 1960, p. 188.

    Google Scholar 

  51. T. M. Hayes and J. B. Boyce, Phys. Rev. B 21, 2513 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyce, J.B., Hayes, T.M. (1981). Structural Studies of Superionic Conduction. In: Teo, B.K., Joy, D.C. (eds) EXAFS Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1238-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1238-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1240-7

  • Online ISBN: 978-1-4757-1238-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics