Conditioning pp 601-623 | Cite as

Conditioning: Modification by Peripheral Mechanisms

  • Joe L. MartinezJr.
Part of the Advances in Behavioral Biology book series (ABBI, volume 26)


This paper examines the idea that peripheral hormones, particularly those of the sympatho-adrenal system, are part of the normal machinery of learning and memory. Blood-borne hormones, although widely distributed in the body have very specific actions because of the nature and location of their receptive sites.

Evidence was presented that the adrenal medullary systems are important for 4-OH amphetamine and Met- and Leu-enkephalin effects on avoidance conditioning, because their actions are dependent on the integrity of the adrenal medulla.

Also examined was the question of whether 4-OH amphetamine, Met- and Leu-enkephalin affect avoidance conditioning by acting directly on the brain or at some peripheral site. It was suggested that even though 4-OH amphetamine may be measured in brain following i.p. injection that its action to enhance retention of an inhibitory avoidance response was mediated peripherally. This suggestion was based on a comparison of dose-response effectiveness of amphetamine and 4-OH amphetamine on intracranial self-stimulation behavior and avoidance conditioning and the fact that the effect of 4-OH amphetamine is abolished by adrenal medullectomy. Similarly, it is likely that both Met- and Leu-enkephalin have a primary site of action in the periphery in impairing acquisition of a one-way active avoidance task, because adrenal medullectomy appears to completely abolish the actions of Met-enkephalin and shifts the effective dose of Leuenkephalin to higher doses. However, Leu-enkephalin, which apparently has a site of action distant from the adrenal medulla, did not alter EEG activity at a dose 50 times greater than its behaviorally effective dose also suggesting that Leu-enkephalin has a primary site of action in the periphery.


Avoidance Response Adrenal Medulla Active Avoidance Population Spike Inhibitory Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J. P., Kendall, J. W., McGilvra R., and Vancura, C., Immunoreactive ACTH in cerebrospinal fluid, J. Clin. Endocrinol. Metab. 38:586 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    Axelrod, J., Weil-Malberbe, H., and Tomchick, R., The physiological disposition of 3H-epinephrine and its metabolite metanephrine, J. Pharm. Exp. Ther., 127: 251 (1959).Google Scholar
  3. 3.
    Ball, G. G., Vagotomy: effect of electrically elicited eating and self-stimulation in the lateral hypothalamus, Science 184: 484 (1974).Google Scholar
  4. 4.
    Beaudet, A. and Descarries, L., The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals, Neuroscience 3: 851 (1978).Google Scholar
  5. 5.
    Beckwith, B. E. and Sandman, C. A., Behavioral influences of the neuropeptides ACTH and MSH: a methodological review, Neurosci. Biobeh. Rev., 2:311 (1978).Google Scholar
  6. 6.
    Belluzzi, J. and Martinez, Jr., J. L., Differential actions of dl-amphetamine and dl-4-OH amphetamine on intracranial selfstimulation behavior, in preparation.Google Scholar
  7. 7.
    Conford, E. M., Braun, L. D., Crane, P. D., and Olendorf, H., Blood-brain barrier restriction of peptides and the low uptake of enkephalins, Endocrinology 103: 1297 (1978).Google Scholar
  8. 8.
    Conner, R. L. and Levine, S., The effects of adrenal hormones on the acquisition of signaled avoidance behavior, Hor. Behay., 1: 73 (1969).CrossRefGoogle Scholar
  9. 9.
    Cooper, J. R., Bloom, F. E., and Roth, R. H., “The Biochemical Basis of Neuropharmacology,” Oxford University Press, New York (1978).Google Scholar
  10. 10.
    de Wied, D., Peptides and behavior, Life Sci., 20: 195 (1977).CrossRefGoogle Scholar
  11. 11.
    Dunn, A., Biochemical correlates of training experiences: A discussion of the evidence, in: “Neural Mechanisms of Learning and Memory,” M. R. Rosenzweiz and E. L. Bennett, eds., The MIT Press, Cambridge (1976).Google Scholar
  12. 12.
    Dunwiddie, T., Madison, V., and Lynch, G., Synaptic transmission is required for initiation of long-term potentiation, Brain Res., 150: 413 (1978).Google Scholar
  13. 13.
    Gold, P. E. and McCarty, R., Plasma catecholamines: changes after footshock and seizure-producing frontal cortex stimulation, Behay. Neur. Biol. 31:247 (1981).Google Scholar
  14. 14.
    Greenough, W. T., Development and memory: the synaptic connection, in: “Brain and Learning,” T. Teyler, ed., Greylock, Stamford (1978).Google Scholar
  15. 15.
    Hexum, T. D., Yang, Y.-Y. T., and Costa, E., Biochemical characterization of enkephalin-like immunoreactive peptides of adrenal glands, Life Sci., 27: 1211 (1980).Google Scholar
  16. 16.
    Hughes, J., Kosterlitz, H. W., and Smith, T. W., The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues, Brit. J. Pharmacol. 61: 639 (1977).Google Scholar
  17. 17.
    Ishikawa, K. and McGaugh, J. L., Simultaneous determination of monoamine transmitters, precursors and metabolites in a single mouse brain, J. Chromatogr. in press.Google Scholar
  18. 18.
    Javoy, F., Klowinski, J., and Kordon, C., Effects of adrenal-ectomy on the turnover of norepinephrine in the rat brain, Eur. J. Pharmacol. 4: 103 (1968).PubMedCrossRefGoogle Scholar
  19. 19.
    Kumakura, K., Karoum, F., Guidotti, A., and Costa, E., Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells, Nature 283: 489 (1980).Google Scholar
  20. 20.
    Leshner, A. I., “An Introduction to Behavioral Endocrinology,” Oxford University Press, New York (1978).Google Scholar
  21. 21.
    Levine, S., Hormones and conditioning, in: “Nebraska Symposium on Motivation,” W. J. Arnold, ed., University of Nebraska Press, Lincoln (1968).Google Scholar
  22. 22.
    Levine, S. and Soliday, S., An effect of adrenal demedullation on the acquisition of a conditioned avoidance response, J. Comp. Physiol. Psychol. 55: 214 (1962).PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez, Jr., J. L., Ishikawa, K., Hannan, T., Liang, K. C., Vasquez, B. J., Jensen, R. A., Sternberg, D., Brewton, C., and McGaugh, J. L., Actions of 4 OH-amphetamine on active avoidance conditioning and regional brain concentrations of norepinephrine and dopamine, Soc. Neurosci. Abst. 7 (1981).Google Scholar
  24. 24.
    Martinez, Jr., J. L., Ishikawa, K., Liang, K. C., Jensen, R. A., Brewton, C., Sternberg, D., Messing, R. B., and McGaugh, J. L., 4-OH amphetamine enhances retention of an active avoidance response in rats and decreases regional brain concentrations of norepinephrine and dopamine, in preparation.Google Scholar
  25. 25.
    Martinez, Jr., J. L., Jensen, R. A., Creager, R., Veliquette, J. Messing, R. B., McGaugh, J. L., and Lynch G., Selective effects of enkephalin on electrical activity of the in vitro hippocampal slice, Behay. Neur. Biol., 26:128 (1979).Google Scholar
  26. 26.
    Martinez, Jr., J. L., Jensen, R. A., Messing, R. B., Vasquez, B. J., Soumireu-Mourat, B., Geddes, D., Liang, K. C., and McGaugh, J. L., Central and peripheral actions of amphetamine on memory storage, Brain Res., 182: 157 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    Martinez, Jr., J. L., Jensen, R. A., Vasquez, B. J., Lacob, J. S., McGaugh, J. L., and Purdy, R. E., Acquisition deficits induced by sodium nitrite in rats and mice, Psychopharmcol. 60: 221 (1979).Google Scholar
  28. 28.
    Martinez, Jr., J. L., McGaugh, J. L., Hanes, C.L., and Lacob, J. S., Modulation of memory processes induced by stimulation of the entorhinal cortex, Physiol. Behay. 19:139 (1977).Google Scholar
  29. 29.
    Martinez, Jr., J. L. and Rigter, H., Enkephalin actions on avoidance conditioning may be related to adrenal medullary function, in preparation.Google Scholar
  30. 30.
    Martinez, Jr., J. L., Rigter, H., Jensen, R. A., Messing, R. B., Vasquez, B. J., and McGaugh, J. L. Endorphin and enkephalin effects on avoidance conditioning: the other side of the pituitary-adrenal axis, in: “Endogenous Peptides and Learning and Memory Processes,” J.L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds. Academic Press, New York (1981).Google Scholar
  31. 31.
    Martinez, Jr., J. L., Rigter, H., and van der Gugten, J., Enkephalin effects on avoidance conditioning are dependent on the adrenal glands, in: “Endocrinology, Neuroendocrinology, Neuropeptides I.,” E. Stark, G. B. Makara, Zs. Acs, and E. Endröczi, eds., Pergamon Press, London (1981).Google Scholar
  32. 32.
    Martinez, Jr., J. L., Vasquez, B. J., Rigter, H., Messing, R. B., Jensen, R. A., Liang, K. C., and McGaugh, J. L., Attenuation of amphetamine-induced enhancement of learning by adrenal demedullation, Brain Res., 195: 433 (1980).Google Scholar
  33. 33.
    Mason, J. W., Organization of the multiple endocrine responses to avoidance in the monkey, Psychosom. Med. 30: 774 (1968).Google Scholar
  34. 34.
    Mason, J. W., The integrative approach in medicine - implications of neuroendocrine mechanisms, Perspect. Biol. Med., 17:333 (1974).Google Scholar
  35. 35.
    McGaugh, J. L. and Martinez, Jr., J. L., Learning modulatory hormones: an introduction to endogenous peptides and learning and memory processes, in: “Endogenous Peptides and Learning and Memory Processes,” J. L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds., Academic Press, New York (1981).Google Scholar
  36. 36.
    McGaugh, J. L., Martinez, Jr., J. L., Jensen, R. A., Hannan, T. J., Vasquez, B. J., Messing, R. B., Liang, K. C., Brewton, C. B., and Spiehler, V. R., Modulation of memory storage by treatments affecting peripheral catecholamines, in: “Neurobiology of Learning and Memory,” H. Matthies, ed., Raven Press, New York, in press.Google Scholar
  37. 37.
    Meligeni, J. A., Ledergerber, S. A., and McGaugh, J. L., Norepinephrine attenuation of amnesia produced by diethyldithiocarbamate, Brain Res., 149: 155 (1978).Google Scholar
  38. 38.
    Messing, R. B., Vasquez, B. J., Spiehler, V. R., Martinez, Jr., J. L., Jensen, R. A., Rigter, H., and McGaugh, J. L., 3H-Dihydromorphine binding in brain regions of young and aged rats, Life Sci., 26: 921 (1980).Google Scholar
  39. 39.
    Moyer, K. E. and Bunnell, B. N., Effect of adrenal demedullation on an avoidance response in the rat, J. Comp. Physiol. Psychol. 52:215 (1959).Google Scholar
  40. 40.
    Ogren, S. and Fuxe, K., Learning, brain noradrenaline and the pituitary-adrenal axis, Med. Biol. 52: 399 (1974).PubMedGoogle Scholar
  41. 41.
    Palfai, T. and Walsh, T. J., The role of peripheral catecholamines in reserpine-induced amnesia, Behay. Neur. Biol. 27:423 (1979).Google Scholar
  42. 42.
    Rapoport, S. I., Klee, W. A., Pettigrew, K. D., and Ohno, K. Entry of opioid peptides into the central nervous system, Science 207: 84 (1980).Google Scholar
  43. 43.
    Rigter, H., Attenuation of amnesia in rats by systemically administered enkephalins, Science 200: 83 (1978).Google Scholar
  44. 44.
    Rigter, H., Dekker, I., and Martinez, Jr., J. L., A comparison of the ability of opioid peptides and opiates to affect active avoidance conditioning in rats, Regul. Pept. in press.Google Scholar
  45. 45.
    Rigter, H., Jensen, R. A., Martinez, Jr., J. L., Messing, R. B., Vasquez, B. J., Liang, K. C., and McGaugh, J. L., Enkephalin and fear-motivated behavior, Proc. Nat. Acad. Sci. USA, 77: 3729 (1980).CrossRefGoogle Scholar
  46. 46.
    Rigter, H., Hannan, T. J., Messing, R. B., Martinez, Jr., J. L., Vasquez, B. J., Jensen, R. A., Veliquette, J., and McGaugh, J. L., Enkephalins interfere with acquisition of an active avoidance response, Life Sci., 26: 337 (1980).Google Scholar
  47. 47.
    Roberts, D. S. C. and Fibiger, H. C., Evidence for interactions between central noradrenergic neurons and adrenal hormones in learning and memory, Pharmacol. Biochem. Behay. 7:191 (1977).Google Scholar
  48. 48.
    Shellenberger, M. K. and Gordon, J. H., A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine, and 5-hydroxy-tryptamine from discrete brain areas. Analytical Biochemistry 39: 356 (1971).PubMedCrossRefGoogle Scholar
  49. 49.
    Silva, M. T. A., Extinction of a passive avoidance response in adrenalectomized and demedullated rats, Behay. Biol., 9: 553 (1973).Google Scholar
  50. 50.
    Silva, M. T. A., Effects of adrenal demedullation and adrenalectomy on an active avoidance response of rats, Physiol. Psychol. 2:171 (1974).Google Scholar
  51. 51.
    Stein, L., Effects and interactions of imipramine, chlorpromazine, reserpine and amphetamine on self-stimulation: possible neurophysiological basis of depression, in: “Recent Advances in Biological Psychiatry,” Vol. 4, J. Wortis, ed., Plenum Press, New York (1962).Google Scholar
  52. 52.
    Stein, L., Norepinephrine reward pathways: role in self-stimulation, memory consolidation, and schizophrenia, University of Nebraska Press, Lincoln (1974).Google Scholar
  53. 53.
    Stein, L., Belluzzi, J. D., and Wise, C. D., Memory enhancement by central administration of norepinephrine, Brain Res., 84: 329 (1975).Google Scholar
  54. 54.
    Sternberg, D. B. and Gold, P. E., Effects of a-and ß-adrenergic receptor antagonists on retrograde amnesia produced by frontal cortex stimulation, Behay. Neur. Biol. 29:289 (1980).Google Scholar
  55. 55.
    Sutherland, E. W., Studies on the mechanism of hormone action, Science 177: 401 (1972).Google Scholar
  56. 56.
    Thompson, R. F., Patterson, M. M., and Berger T., Associative learning in the mammalian nervous system, in: “Brain and Learning,” T. Teylor, ed., Greylock, Stamford (1978).Google Scholar
  57. 57.
    Urca, G., Frenk, H., Liebeskind, J. C., and Taylor, A. N., Morphine and enkephalin: analgesic and epileptic properties, Science 197: 83 (1977).Google Scholar
  58. 58.
    Viveros, O. H., Diliberto, Jr., E. J., Hazum, E., and Chang, K.-J., Opiate-like meterials in the adrenal medulla: evidence for storage and secretion with catecholamines, Molec. Pharmacol. 16:1101 (1979).Google Scholar
  59. 59.
    Walsh, T. J. and Palfai, T., Peripheral catecholamines and memory: characteristics of syrosingopine-induced amnesia, Pharmacol. Biochem. Behay. 11:449 (1979).Google Scholar
  60. 60.
    Weindl, A. and Sofroniew, M. V., Relation of neuropeptides to mammalian circumventricular organs, in: “Neurosecretion and Brain Peptides,” J. B. Martin, S. Reichin, and K. L. Bick, eds., Raven Press, New York (1981).Google Scholar
  61. 61.
    Wise, C. D. and Stein, L., Facilitation of brain self-stimulation by central administration of norepinephrine, Science 163: 299 (1969).Google Scholar
  62. 62.
    Witter, A., Gispen, W. H., and de Wied, D., Mechanisms of action of behaviorally active ACTH-like peptides, in: “Endogenous Peptides and Learning and Memory Processes,” J. L. Martinez, Jr., R. A. Jensen, R. B. Messing, H. Rigter, and J. L. McGaugh, eds., Academic Press, New York (1981).Google Scholar
  63. 63.
    Yang, H.-Y. T., Hexum, T., and Costa, E. Opioid peptides in adrenal gland, Life Sci., 27: 1119 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Joe L. MartinezJr.
    • 1
  1. 1.Psychobiology Department School of Biological SciencesUniversity of CaliforniaIrvineUSA

Personalised recommendations